Math, asked by Tanna1, 1 year ago

if the ratio of the sum of the 1st n terms of the APs is (7n+1):(4n+27),tjen find the ratio of their 9th term.


madhavchilukurp35nb1: i wish i knew the amswer
sivaprasath: why?

Answers

Answered by sivaprasath
2
Solution:

_____________________________________________________________

Given:

   The ratio of the sum of the 1st n terms of the APs is (7n+1):(4n+27)

 P_n : Q_n = 7n+1: 4n+27

_____________________________________________________________

To find :

Ratio of their 9th term,.

_____________________________________________________________


By converting the ratios into fraction , we get,

=>  \frac{P_n}{Q_{n}} = \frac{7n+1}{4n+27}

As, we know that,

=> S_n =  \frac{n}{2} (2a + (n-1)d)

So,

=>  \frac{ \frac{n}{2}(2a_1+(n-1)d_1) }{  \frac{n}{2}(2a_2 + (n-1)d_2)} =  \frac{7n+1}{4n+27}

=> \frac{ (2a_1+(n-1)d_1) }{ (2a_2 + (n-1)d_2)} = \frac{7n+1}{4n+27}

=> \frac{ 2a_1+nd_1-d_1 }{ 2a_2 + nd_2-d_2} = \frac{7n+1}{4n+27}
....(i)

By replacing value of n = 2l - 1 in (i),

We get,

=>  \frac{2a_1+(2l-1-1)d_1}{2a_2 + (2l-1-1)d_2} = \frac{7(2l-1)+1}{4(2l-1)+27}

=>    \frac{2a_1+(2l-2)d_1}{2a_2 + (2l-2)d_2} =  \frac{7(2l-1)+1}{4(2l-1)+27}

=> \frac{2(a_1+(l-1)d_1)}{2(a_2 + (l-1)d_2)} = \frac{14l-7+1}{8l-4+27}

=> \frac{a_1+(l-1)d_1}{a_2 + (l-1)d_2} = \frac{14l-6}{8l+23}

=> a_{l1} : a_{l2} = 14l - 6 : 8l + 23


a_9 : a_9 = 14(9) -6 : 8(9)+23

=> a_9 : a_9 = 126 - 6 : 72 + 23

=> a_9 : a_9= 120: 95

=> a_9 : a_9= 24 : 19

_____________________________________________________________

                            Hope it Helps !!

=> Mark as Brainliest,.

sivaprasath: Thanks?
sivaprasath: thanks,.(hand slipped)
Tanna1: hand slipped......????
sivaprasath: yep,.
sivaprasath: that' ? ' came hand slipped
Similar questions