Math, asked by chinmayamodkar25, 3 months ago

If the ratio of the volumes of two cylinders of equal height is 25:36, what is the ratio of their radii?
1️⃣ 5:6
2️⃣ 6:5
3️⃣ 16:5
4️⃣ 36:2
Please give full answer in explanation​

Answers

Answered by Anonymous
18

Given

  • Ratio of the volumes of two Cylinders = 25:36
  • π = 22/7 or 3.14

Explanation:

❍ Let the Radius of Cylinders be x and Height be h and then Volumes of Cylinders be  {\sf{ V_1, V_2}} :

 \maltese \ {\boxed{\underline{\sf\large{ Volume_{(Cүlinder)} = πr^2h }}}} \\

Where as:

  • r = Radius
  • h = Height

The volume of the cylinder can be given by the product of the area of base and height.

 \\ \bigstar {\underline{\pmb{\sf{ According \ to \ Question: }}}} \\ \\ \colon\implies{\sf{ \dfrac{V_1}{V_2} = \dfrac{πr^2h}{πr^2h} }} \\ \\ \\ \colon\implies{\sf{ \dfrac{25}{36} = \dfrac{ \cancel{π} \ x^2 \ \cancel{h} }{ \cancel{π} \ x^2 \ \cancel{h} } }} \\ \\ \\ \colon\implies{\sf{ \dfrac{25}{36} = \dfrac{x^2}{x^2} }} \\ \\ \\ \colon\implies{\sf{ 25x^2 = 36x^2 }} \\ \\ \\ \colon\implies{\sf{ (5x)^{ \cancel{2} } = (6x)^{ \cancel{2 } } }} \\ \\ \\ \colon\implies{\sf{ 5 \cancel{x}  = 6 \cancel{x} }} \\ \\ \\ \colon\implies{\sf{ 5 = 6 }} \\ \\ \colon\implies{\boxed{\sf\red{ 5 \colon 6 }}} \\

Hence,

 {\underline{\sf{The \ Ratio \ of \ the \ Radius \ of \ two \ Cylinders \ will \ be \ 5:6 }}} \\

Answered by adolo
0

Answer:

5:6

Step-by-step explanation:

Volume of a cylinder 1 = πr_{1} ^{2}h_{1}

Volume of a cylinder 2 = πr_{2} ^{2}h_{2}

but h_{1}  =  h_{2}

\frac{V_{1} }{V_{2} }  = \frac{25}{36} = \frac{\pi r_{1} ^{2}  h}{\pi r_{2} ^{2}  h} = (\frac{r_{1} }{r_{2} } )^{2}

Hence, \frac{r_{1} }{r_{2} } = \sqrt{\frac{25}{36} } = \frac{5}{6}

Similar questions