Math, asked by Virajdube, 3 months ago

*If the ratio of the volumes of two cylinders of equal height is 25:36, what is the ratio of their radii?*​

Answers

Answered by MrMonarque
7

\Large{\underline{\sf{Given:}}}

  • Ratio of Volumes of two Cylinders = 25:36
  • Height of the cylinders are equal

\Large{\underline{\sf{To\;Find:}}}

  • Ratio of 'Radii' the cylinders

\huge{\underline{\underline{\bf{࿇\;Solution:}}}}

◯ Let's Radius of the cylinder be r and heights be h then volumes of the cylinders are \bf{V_1 , V_2}

❉\;{\boxed{\underline{\sf{Volume_{(cylinder)} = πr²h}}}}

Where

  • ✮ Radius = r
  • ✮ Height = h

\bold{✍\:According\;To\;Sum}

\Large{→\;{\sf{\frac{V_1}{V_2} = \frac{πr²h}{πr²h}}}}

\: \: \: \: \: \:

\Large{→\;{\sf{\frac{25}{36} = \frac{\cancel{π}r²\cancel{h}}{\cancel{π}r²\cancel{h}}}}}

\: \: \: \: \: \:

→\;{\sf{25r² = 36r²}}

\: \: \: \: \: \:

→\;{\sf{(5r)² = (6x)²}}

\: \: \: \: \: \:

\Large{\red{✎\;{\bf{5:6}}}}

The ratio radii of the cylinders ◕➜ 5:6

Hope It Helps You ✌️

Similar questions