Math, asked by amir321hussain321, 4 days ago

If the ratio of three sides of a triangle is a:b:c = 7:8:9 then show that cosA:cosB:cosC=14:11:6​

Answers

Answered by tennetiraj86
17

Step-by-step explanation:

Given :-

The ratio of three sides of a triangle is a:b:c = 7:8:9

To find :-

cos A : cos B : cos C = 14:11:6

Solution :-

Given that

The ratio of three sides of a triangle

= 7:8:9

a:b:c = 7:8:9

Let they be 7X , 8X and 9X units

a = 7X

b = 8X

c = 9X

We know that

cos A = (+-a²)/(2bc)

=> cos A = [(8X)²+(9X)²-(7X)²]/(2×8X×9X)

=> cos A = (64X²+81X²-49X²)/(144X²)

=> cos A = (145X²-49X²)/(144X²)

=> cos A = (96X²)/(144X²)

=> cos A = 96/144

=> cos A = (2×48)/(3×48)

=> cos A = 2/3 ------------------(1)

We know that

cos B = (+-b²)/(2ac)

=> cos B = [(9X)²+(7X)²-(8X)²]/(2×7X×9X)

=> cos B = (81X²+49X²-64X²)/(126X²)

=> cos B = (130X²-64X²)/(126X²)

=> cos B = (66X²/(126X²)

=> cos B = 66/126

=> cos B = (11×6)/(21×6)

=> cos B = 11/21 ---------------(2)

We know that

cos C = (+-c²)/(2ab)

=> cos C = [(7X)²+(8X)²-(9X)²]/(2×7X×8X)

=> cos C = (49X²+64X²-81X²)/(112X²)

=> cos C = (113X²-81X²)/(112X²)

=> cos C = (32X²)/(112X²)

=> cos C = 32/112

=> cos C = (2×16)/(7×16)

=> cos C = 2/7 ----------------(3)

We have,

cos A = 2/3

cos B = 11/21

cos C = 2/7

Now,

The ratio of cos A , cos B and cos C

=cos A : cos B : cos C

= (2/3):(11/21):(2/7)

LCM of 3 , 21 and 7 = 21

= [(2/3)×(7/7)] : (11/21) : [ (2/7)×(3/3)]

= (14/21) : (11/21) : (6/21)

= 14 : 11 : 6

Answer :-

cos A : cos B : cos C = 14 : 11 : 6

Used formulae:-

cos A = (b²+c²-a²)/(2bc)

cos B = (c²+a²-b²)/(2ac)

cos C = (a²+b²-c²)/(2ab)

Answered by arshikhan8123
0

Concept:

The study of the correlation between a right-angled triangle's sides and angles is the focus of one of the most significant branches of mathematics in history: trigonometry. Hipparchus, a Greek mathematician, introduced this idea.

cos A = (b²+c²-a²)/(2bc)

cos B = (c²+a²-b²)/(2ac)

cos C = (a²+b²-c²)/(2ab)

Given :-

The ratio of three sides of a triangle is a:b:c = 7:8:9

Find :-

cos A : cos B : cos C = 14:11:6

Solution :-

The ratio of three sides of a triangle

= 7:8:9

a:b:c = 7:8:9

Let they be 7X , 8X and 9X units

a = 7X

b = 8X

c = 9

We know that

cos A = (b²+c²-a²)/(2bc)

=> cos A = [(8X)²+(9X)²-(7X)²]/(2×8X×9X)

=> cos A = (64X²+81X²-49X²)/(144X²)

=> cos A = (145X²-49X²)/(144X²)

=> cos A = (96X²)/(144X²)

=> cos A = 96/144

=> cos A = (2×48)/(3×48)

=> cos A = 2/3 ------------------(1)

We know that

cos B = (c²+a²-b²)/(2ac)

=> cos B = [(9X)²+(7X)²-(8X)²]/(2×7X×9X)

=> cos B = (81X²+49X²-64X²)/(126X²)

=> cos B = (130X²-64X²)/(126X²)

=> cos B = (66X²/(126X²)

=> cos B = 66/126

=> cos B = (11×6)/(21×6)

=> cos B = 11/21 ---------------(2)

We know that

cos C = (a²+b²-c²)/(2ab)

=> cos C = [(7X)²+(8X)²-(9X)²]/(2×7X×8X)

=> cos C = (49X²+64X²-81X²)/(112X²)

=> cos C = (113X²-81X²)/(112X²)

=> cos C = (32X²)/(112X²)

=> cos C = 32/112

=> cos C = (2×16)/(7×16)

=> cos C = 2/7 ----------------(3)

We have,

cos A = 2/3

cos B = 11/21

cos C = 2/7

Now,

The ratio of cos A , cos B and cos C

=cos A : cos B : cos C

= (2/3):(11/21):(2/7)

LCM of 3 , 21 and 7 = 21

= [(2/3)×(7/7)] : (11/21) : [ (2/7)×(3/3)]

= (14/21) : (11/21) : (6/21)

= 14 : 11 : 6

Hence proved

#SPJ2

Similar questions