Math, asked by aruntamang763, 7 months ago

If the ratio of three sides of triangle are 3:4:5.If the perimeter of triangle is 60. Find the area of triangle .​

Answers

Answered by chanchalkange
1

Step-by-step explanation:

I hope its help you.

if you like it so pzz mark me as brainalist.

Attachments:
Answered by Anonymous
37

\huge\mathfrak{\bf{\underline{\underline{Answer \ ⟹}}}}

Sides Of Triangle Are In Ratio 3:4:5

Perimeter ⟹ 144

Let,

The Sides Of Triangle Be {3x \ , \ 4x \ , \ 5x .}

ㅤㅤㅤㅤㅤPerimeter = 3x + 4x + 5x \\ ㅤㅤㅤ60 = 3x + 4x + 5x \\ 60 = 12x \\ x = 5

Then Sides Of Triangles Are,

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ3x = 3(5) = 15

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ4x = 4(5) = 20

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ5x = 5(5) = 25

Now,

Semiperimeter = s =  \frac{sum \: of \: sides \: of \: triangle}{2}  \\</p><p> Semiperimeter = s =  \frac{15 + 20 + 25}{2}  \\</p><p></p><p>Semiperimeter = s =  \frac{60}{2 }   \\ </p><p></p><p>Semiperimeter = s = 30

USING HERON'S FORMULA,

AREA  \: OF  \: TRAINGLE  \implies \:  ㅤㅤㅤㅤㅤㅤㅤㅤㅤ</strong><strong>ㅤ</strong><strong>ㅤ</strong><strong>ㅤ</strong><strong>ㅤ</strong><strong>ㅤ\sqrt{s(s -  a)(s - b)(s - c)}

 =  \sqrt{30(30 - 15)(30 - 20)(30 - 25)}  \\  </p><p></p><p> = \sqrt{30(15)(10)(5)}  \\</p><p></p><p>  =   \sqrt{30(750)}  \\ </p><p></p><p> =  \sqrt{22500}  \\  </p><p></p><p>= 150 \:  {cm}^{2}

ㅤㅤㅤ \boxed{ \boxed{AREA \:  OF \:  TRAINGLE  = 150 { \: cm}^{2} }}

Similar questions