Math, asked by Anonymous, 1 month ago

If the ratio of two numbers is (2+√3) : (2-√3), then find the ratio of their arithmetic Mean (AM) and geometric mean (GM).​

Answers

Answered by MrImpeccable
25

ANSWER:

Given:

  • Ratio of 2 numbers = (2+√3) : (2-√3)

To Find:

  • Ratio of Arithmetic Mean(AM) and Geometric Mean(GM)

Solution:

Let the numbers be x and y.

We are given that,

\implies x : y = \left(2+\sqrt3\right):\left(2-\sqrt3\right)

That is,

\implies \dfrac{x}{y}= \dfrac{2+\sqrt3}{2-\sqrt3}

Rationalizing the denominator in RHS,

\implies \dfrac{x}{y}= \dfrac{2+\sqrt3}{2-\sqrt3}\times \dfrac{2+\sqrt3}{2+\sqrt3}

\implies \dfrac{x}{y}= \dfrac{(2+\sqrt3)(2+\sqrt3)}{(2-\sqrt3)(2+\sqrt3)}

So,

\implies \dfrac{x}{y}= \dfrac{(2+\sqrt3)^2}{(2)^2-(\sqrt3)^2}

\implies \dfrac{x}{y}= \dfrac{(2+\sqrt3)^2}{4-3}

Hence,

\implies \dfrac{x}{y}= (2+\sqrt3)^2

Transposing y to RHS,

\implies x= (2+\sqrt3)^2y - - - -(1)

Now, we know that, for 2 numbers a and b,

\hookrightarrow\sf Arithmetic \:Mean(AM) =\dfrac{a+b}{2}

And,

\hookrightarrow\sf Geometric \:Mean(GM) =\sqrt{ab}

So, the ratio of AM and GM is,

\implies \dfrac{AM}{GM}=\dfrac{\left(\dfrac{a+b}{2}\right)}{\sqrt{ab}}

\implies \dfrac{AM}{GM}=\dfrac{a+b}{2\sqrt{ab}}

Here, the numbers are x and y, so,

\implies \dfrac{AM}{GM}=\dfrac{x+y}{2\sqrt{xy}}

Substituting the value of x from (1),

\implies \dfrac{AM}{GM}=\dfrac{\left((2+\sqrt3)^2y\right)+y}{2\sqrt{\left((2+\sqrt3)^2y\right)y}}

\implies \dfrac{AM}{GM}=\dfrac{y\left((2+\sqrt3)^2+1\right)}{2\sqrt{\left((2+\sqrt3)^2y^2\right)}}

\implies \dfrac{AM}{GM}=\dfrac{y\!\!\!/\:\left((2+\sqrt3)^2+1\right)}{2(2+\sqrt3)y\!\!\!/}

\implies \dfrac{AM}{GM}=\dfrac{(2+\sqrt3)^2+1}{2(2+\sqrt3)}

Opening the expression, (2+√3)² ,

\implies \dfrac{AM}{GM}=\dfrac{(2)^2+(\sqrt3)^2+2(2)(\sqrt3)+1}{2(2+\sqrt3)}

\implies \dfrac{AM}{GM}=\dfrac{7+4\sqrt3+1}{2(2+\sqrt3)}

\implies \dfrac{AM}{GM}=\dfrac{8+4\sqrt3}{2(2+\sqrt3)}

Taking 2 common,

\implies \dfrac{AM}{GM}=\dfrac{2\!\!\!/\:(4+2\sqrt3)}{2\!\!\!/\:(2+\sqrt3)}

\implies \dfrac{AM}{GM}=\dfrac{4+2\sqrt3}{2+\sqrt3}

Rationalising the denominator on RHS,

\implies \dfrac{AM}{GM}=\dfrac{4+2\sqrt3}{2+\sqrt3}\times \dfrac{2-\sqrt3}{2-\sqrt3}

\implies \dfrac{AM}{GM}=\dfrac{(4+2\sqrt3)(2-\sqrt3)}{(2+\sqrt3)(2-\sqrt3)}

\implies \dfrac{AM}{GM}=\dfrac{8-4\sqrt3+4\sqrt3-6}{(2)^2-(\sqrt3)^2}

\implies \dfrac{AM}{GM}=\dfrac{2}{4-3}

Hence,

\implies \dfrac{AM}{GM}=\dfrac{2}{1}

Therefore,

\implies\bf AM:GM = 2:1

Similar questions