Math, asked by tapanmetro, 11 months ago

If the ratio of two roots of the quadratic equation is 1:r, then let us show that (r+1)(r+1)/r=b×b/ac.

Answers

Answered by BrainlyPopularman
1

Answer:

quadratic \: \: equtaion =  >  \\  \\  a{x}^{2}    + bx + c = 0\\  \\ ratio \:  \: of \:  \: roots =  \frac{ \sqrt{d} }{a}  \\  \\  \frac{1}{r}  =  \frac{ \sqrt{ {b}^{2} - 4ac } }{a}  \\  \\ r =  \frac{a}{ \sqrt{ {b}^{2}  - 4ac} }  \\  \\ l.h.s = (r + 1)(1 +  \frac{1}{r} ) = ( \frac{a}{ \sqrt{ {b}^{2} - 4ac } } )(1 +  \frac{ { \sqrt{ {b}^{2} - 4ac } }}{a} ) \\  \\  =  \frac{ {b}^{2} }{ac}

Similar questions