Math, asked by galaxy30, 7 months ago

If the ratio the length Of the rectangle is 3:4 and it's perimeter will be 360m. Then, Find the area​

Answers

Answered by Anonymous
11

Correct Question:

If the ratio of the length and Breadth Of an rectangle is 3:4 respectively and it's perimeter will be 360m. Then, Find the area

Answer:

Given:

  • Ratio Of the length and Breadth of rectangle = 3:4
  • Perimeter Of rectangle = 360m

To Find:

  • Area Of Rectangle

Solution:

Let, The length Of Rectangle = 3x

And The Breadth of Rectangle = 4x

we, know that

 \underline{ \boxed{ \color{violet} \sf Perimeter \:  Of \:  rectangle = 2(l + b) }}

where,

  • Perimeter of Rectangle = 360m
  • Length of Rectangle = 3x
  • Breadth of Rectangle = 4x

So,

 \implies\color{orange} \sf 360 = 2(3x + 4x)

 \implies\color{orange} \sf 360 = 2(7x)

 \implies\color{orange} \sf 360 = 14x

 \implies\color{orange} \sf x =  \frac{ \cancel{360}}{ \cancel{14}} = 25.71

 \implies\color{orange} \sf x  = 25.7

So, Length of Rectangle = 3x = 3 × 25.7 = 77.1m

And Breadth of Rectangle = 4x = 4 × 102.8m

Now, We, know that

 \underline{ \boxed{ \color{red} \sf Area \:  Of \:  rectangle =l \times b }}

where,

  • Length = 77.1 m
  • Breadth = 102.8m

So,

 \implies\color{green} \sf Area \:  Of \:  rectangle =77.1 \times 102.8

 \implies\color{green} \sf Area \:  Of \:  rectangle =7925.88 {m}^{2}

Hence, The Area of Rectangle will Be 7925.88m²

Diagram:

\setlength{\unitlength}{0.25cm}\begin{picture}(5,5)\thicklines\multiput(0,0)(24,0){2}{\line(0,1){7}}\multiput(0,0)(0,7){2}{\line(1,0){24}}\put(10,-2){\sf{102.8\ m}}\put(25,3){\sf{77.1\ m}}\end{picture}

Answered by EnchantedGirl
11

 \mathfrak{\underline{\pink{Given: }}}

  • Ratio Of the length and Breadth of rectangle = 3:4

  • Perimeter Of rectangle = 360m

\underline{\blue{To Find:}}

  • Area Of Rectangle .

\mathfrak{\underline{\green{Solution:}}}

Let, 

The length Of Rectangle = 3x

And The Breadth of Rectangle = 4x

we know,

\underline{ \boxed{ \color{pink} \sf Perimeter \: Of \: rectangle = 2(l + b) }}

where,

Perimeter of Rectangle = 360m

Length of Rectangle = 3x

Breadth of Rectangle = 4x

So,

\implies  360 = 2(3x + 4x)

 \implies 360 = 2(7x)

\implies 360 = 14x

\implies x = \frac{ \cancel{360}}{ \cancel{14}} =</p><p> 25.71

\implies x = 25.7

So, Length of Rectangle = 3x = 3 × 25.7 = 77.1m

And Breadth of Rectangle = 4x = 4 × 102.8m

Now, 

\underline{ \boxed{   Area \: Of \: rectangle =l \times b }}

where,

Length = 77.1 m

Breadth = 102.8m

So,

\implies \sf Area \: Of \: rectangle =77.1 \times 102.8

\implies \sf Area \: Of \: rectangle =7925.88 {m}^{2</p><p>}

Hence,\underline{\orange{The \:Area \:of \:Rectangle\: will \: Be\: 7925.88m^2}}.

_______________________

Similar questions