Math, asked by ruiprasadvalanju, 8 months ago

if the ratios 3:5 and x:20 are in proportion find the value of
12 if angles of a triangler​

Answers

Answered by Anonymous
2

\huge\bold{{\pink{Q}}{\blue{U}}{\green{E}}{\red{S}}{\purple{T}}{\orange{I}}{\pink{O}}{\blue{N}}{\green{❥}}}

If the ratios 3:5 and x:20 are in proportion find the value of x.

\huge\bold{{\pink{G}}{\blue{I}}{\green{V}}{\red{E}}{\purple{N}}{\green{❥}}}

3:5 :: x:20

\huge\bold{{\pink{T}}{\blue{O}}{\green{  }}{\red{F}}{\purple{I}}{\orange{N}}{\pink{D}}{\green{❥}}}

The value of x.

\huge\bold{{\pink{S}}{\blue{O}}{\green{L}}{\red{U}}{\purple{T}}{\orange{I}}{\pink{O}}{\blue{N}}{\green{❥}}}

3:5 :: x:20

\frac{3}{5} = \frac{x}{20}

➳ 5x = (20×3)

➳ 5x = 60

➳ x = \frac{60}{5}

➳ x = 12

\huge\bold{{\pink{H}}{\blue{E}}{\green{N}}{\red{C}}{\purple{E}}{\green{❥}}}

x = 12

\huge\bold{{\pink{T}}{\blue{H}}{\green{E}}{\red{R}}{\purple{E}}{\orange{F}}{\pink{O}}{\blue{R}}{\red{E}}{\green{❥}}}

The value of x is 12.

\huge\bold{{\pink{V}}{\blue{E}}{\green{R}}{\red{I}}{\purple{F}}{\orange{I}}{\pink{C}}{\blue{A}}{\green{T}}{\red{I}}{\purple{O}}{\orange{N}}{\green{❥}}}

3:5 :: x:20

➳ 3:5 :: 12:20    {cross multiplication}

\frac{3}{5} = \frac{12}{20}

\frac{3}{5} = \frac{12÷4}{20÷4}

\frac{3}{5} = \frac{3}{5}

So, L.H.S = R.H.S.

Hence, verified.

\huge\bold{{\pink{D}}{\blue{O}}{\green{N}}{\red{E}}{\purple{࿐}}}

\bold{\boxed{{\blue{✿}}{\pink{H}}{\blue{O}}{\green{P}}{\red{E}}{\purple{  }}{\orange{T}}{\pink{H}}{\blue{I}}{\green{S}}{\red{  }}{\purple{H}}{\orange{E}}{\pink{L}}{\blue{P}}{\green{S}}{\red{  }}{\purple{Y}}{\orange{O}}{\pink{U}}{\blue{✿}}}}

Similar questions