Math, asked by Anonymous, 8 hours ago

If the regression equation of x on y is given by mx – y + 10 = 0 and the equation of y on x is given by -2x + 5y = 14, determine the value of ‘m’ if the coefficient of correlation between x and y is 1/√10

● Want Quality Answers ☑️
● Spammers Stay Away​

Answers

Answered by ItzAshi
338

Step-by-step explanation:

{\Large{\mathbf{\orange{Question :}}}} \\

If the regression equation of x on y is given by mx – y + 10 = 0 and the equation of y on x is given by -2x + 5y = 14, determine the value of ‘m’ if the coefficient of correlation between x and y is 1/√10

{\Large{\mathbf{\orange{Solution :}}}} \\

Two regressions line :

{\bold{\mathrm{x  \: \:  on \:   \: y  \:  \: is   \: \: -}}} \\

mx – y + 10 = 0

mx = y - 10

{\bold{\mathrm{:  \: ⟹ \:  \:  \:  \:  \: x  \: = \:  \frac{1}{m} \:  y  \: -  \: \frac{10}{m}}}} \\  \\

{\bold{:  \: ⟹ \:  \:  \:  \:  \: }}{\bold{\boxed{\mathrm{\pink{ b_{xy}  \: = \:  \frac{1}{m}}}}}} \\  \\

{\bold{\mathrm{y  \:  \: on  \:  \: x  \:  \: is \:  \:  -}}} \\

-2x + 5y = 14

5y = 2x + 14

{\bold{\mathrm{:  \: ⟹ \:  \:  \:  \:  \: y  \: =  \: \frac{2}{5x} \:  + \:  \frac{14}{5}}}} \\  \\

{\bold{:  \: ⟹ \:  \:  \:  \: }}{\bold{\boxed{\mathrm{\pink{b_{yx} \:  = \:  \frac{2}{5}}}}}} \\  \\

{\bold{\mathrm{:  \: ⟹  \:  \:  \:  \:  \: r  \: =  \: \frac{1}{ \sqrt{10} }}}} \\  \\

{\bold{\mathrm{:  \: ⟹  \:  \:  \:  \:  \: r  \: = \:  \sqrt{b_{xy} \:  ×  \: b_{yx}}}}} \\  \\

Put the values,

{\bold{\mathrm{:  \: ⟹  \:  \:  \:  \:  \: \frac{1}{\sqrt{10}}  \: = \:  \sqrt{\frac{1}{m}  \: × \:  \frac{2}{5}}}}} \\  \\

Squaring both the sides,

{\bold{\mathrm{:  \: ⟹  \:  \:  \:  \:  \: \frac{1}{\sqrt{10}}  \: =  \: \frac{2}{5m}}}} \\  \\

{\bold{\mathrm{:  \: ⟹ \:  \:  \:  \:  \:  5m  \: =  \: 20}}} \\  \\

{\bold{\mathrm{:  \: ⟹  \:  \:  \:  \:  \: m  \: =  \: \frac{20}{5}}}} \\  \\

:  \: ⟹ \:  \:  \:  \:  \: {\bold{\boxed{\mathrm{\orange{ m  \: =  \: 4}}}}} \\

Similar questions