If the remainder on division of x3 + 2x2 + kx +3 by x – 3 is 21, find the quotient and the
value of k. Hence, find the zeroes of the cubic polynomial x3 + 2x2 + kx – 18.
Answers
Answer:
Step-by-step explanation:
Given x^3 + 2 x^2 + k x + 3
X – 3 = 0
X = 3
f(3) = 21
3^3 + 2(3)^2 + k(3) + 3 = 21
27 + 18 + 3k + 3 = 21
3k = - 27
K = - 9
Now
X^3 + 2 x^2 + k x – 18
We have k = -9
X^3 + 2 x^2 – 9 x + 3
So by division we get
X – 3)x + 2 x^2 – 9 x + 3(x^2 + 5 x + 6
X^3 – 3 x^2
---------------------------------------
5 x^2 – 9 x + 3
5 x^2 – 15 x
-------------------------------------------
6 x + 3
6 x – 18
----------------------------------------------
21
So we get x^3 + 2 x^2 – 9 x + 3 = (x – 3)(x^2 + 5 x + 6) + 21
(x – 3)(x^2 + 5 x + 6)
(x – 3)(x^2 + 2 x + 3 x + 6)
(x – 3)(x(x + 2) + 3(x + 2)
(x – 3)(x + 2)(x + 3)
So zeroes of x^3 + 2 x^2 – 9 x – 18 are 3, - 2 and – 3