If the replacement set is the set of natural numbers, solve: 3x – 4 > 6
Answers
Answered by
0
(i) x – 5 < 0
x – 5 + 5 < 0 + 5 ………(Adding 5)
=> x < 5
Required answer = {1, 2, 3, 4}
(ii) x + 1 ≤ 7 = > x + 1 – 1 ≤ 7 – 1 (Subtracting 1)
=> x ≤ 6
Required answer = {1, 2, 3, 4, 5, 6}
(iii) 3x – 4 > 6
3x – 4 + 4 > 6 + 4 (Adding 4)
=> 3x > 10
\frac { 3x }{ 3 } > \frac { 10 }{ 3 } …(Dividing by 3)
=> x > \frac { 10 }{ 3 }
=> x > 3\frac { 1 }{ 3 }
Required answer = { 4, 5, 6, …}
(iv) 4x + 1 ≥ 17
=> 4x + 1 – 1 ≥ 17 – 1 (Subtracting)
=> 4x ≥ 16
=> \frac { 4x }{ 4 } ≥ \frac { 16 }{ 4 } (Dividing by 4)
=> x ≥ 4
Required answer = {4, 5, 6, …}
Similar questions