Math, asked by aadarshgupta929, 1 year ago

If the root of the equation (a^+ b^)x^-2 (ac+ bd )x+ (c^+d^)=0 are equal, prove that ab= cd

Answers

Answered by jitekumar4201
0

Answer:

ad = bc

Step-by-step explanation:

The given equation is-

(a^{2}+b^{2})x^{2} -2(ac+bd)x + (c^{2}+d^{2}) = 0

Comparing with general equation-

Ax^{2}+Bx + C = 0

Here, A = a^{2}+b^{2}

B = -2(ac+bd) and

C = (c^{2}+d^{2})

We know that-

A quadratic equation has equals root if and only if-

B^{2} - 4AC = 0

B^{2} = 4AC

[-2(ac+bd)]^{2} = 4(a^{2}+b^{2})(c^{2}+d^{2})

4(a^{2}c^{2}+b^{2}d^{2}+2abcd) = 4(a^{2}c^{2}+a^{2}d^{2}+b^{2}c^{2}+b^{2}d^{2})

4a^{2}c^{2} + 4b^{2}d^{2} + 8abcd = 4a^{2}c^{2}+4a^{2}d^{2}+4b^{2}c^{2}+4b^{2}d^{2}

8abcd = 4a^{2}d^{2} + 4b^{2}c^{2}

4a^{2}d^{2}+4b^{2}c^{2} - 8adbc = 0

We know that-

x^{2} + y^{2} - 2xy = (x-y)^{2}

(2ad)^{2} + (2bc)^{2} - 2(2ad)(2bc) = 0

So, (2ad - 2bc)^{2} = 0

2ad - 2bc = 0

2ad = 2bc

ad = bc

             Hence proved.

Similar questions