Math, asked by Vineetm4567, 1 year ago

if the root of the equation,(a-b)xsquare+(b-c)x+(c-a)=0 are equal,prove that 2a=b+c

Answers

Answered by smartfool
4
hope u get the answer
Attachments:
Answered by BrainlyConqueror0901
99

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

\huge{\boxed{\sf{GIVEN-}}}

(a - b) {x}^{2}  +( b - c)x +( c - a) = 0

\huge{\boxed{\sf{TO PROVE-}}}

\huge{\boxed{\sf{2b=a+c}}}

\huge{\boxed{\sf{PROOF-}}}

\huge{\boxed{\sf{METHOD(1)-}}}

\huge{\boxed{\sf{D=0}}}

 {b}^{2}  - 4ac = 0 \\ = ) (b - c)^{2}  - 4 \times( a - b)(c - a) = 0 \\  = ) {b}^{2} +  {c}^{2}   - 2bc - 4(ac - bc -  {a}^{2}  + b) = 0 \\   = ){b}^{2}  +  {c}^{2}  + 4 {a}^{2} +  2bc - 4ac - 4ab = 0 \\  = )((b + c) - 2a)^{2}  = 0 \\  = )b + c - 2a = 0 \\  = )b + c = 2a \\  = )2a = b + c

\huge{\boxed{\sf{PROVED}}}

\huge{\boxed{\sf{METHOD(2)}}}

sum \: of \: coefficient \\  = )a - b + b - c + c - a = 0 \\  = ) \alpha  = 1 \\ product \: of \: roots( \alpha  \beta ) =  \frac{c}{a}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = )1 \times 1 =  \frac{c - a}{a  - b}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:    \: = )a - b = c - a \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    = )a + a = b + c \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: =)2a = b + c

\huge{\boxed{\sf{PROVED}}}

Similar questions