if the root of the equation( B - C) X^2 +( C- A )X + A -B are equal then proove that 2B=A+C
Answers
Answered by
1
if roots of a quadratic equation are equal, then the discriminant of the quadratic equation is 0.
D=b2−4ac=0D=b2−4ac=0
(b−c)x2+(c−a)x+(a−b)=0 ≡ ax2+bx+c=0(b−c)x2+(c−a)x+(a−b)=0 ≡ ax2+bx+c=0
Here, a =(b-c) , b = (c-a) and c = (a-b)
So, D = (c−a)2−4(b−c)(a−b)=0(c−a)2−4(b−c)(a−b)=0
c2+a2−2ac−4(ab−b2−ac+bc)=0c2+a2−2ac−4(ab−b2−ac+bc)=0
c2+a2−2ac−4ab+4b2+4ac−4bc=0c2+a2−2ac−4ab+4b2+4ac−4bc=0
c2+a2+2ac+4b2−4ab−4bc=0c2+a2+2ac+4b2−4ab−4bc=0
(c+a)2+4b2−4b(a+c)=0(c+a)2+4b2−4b(a+c)=0
(c+a)2+(2b)2−2⋅(c+a)⋅(2b)=0(c+a)2+(2b)2−2⋅(c+a)⋅(2b)=0
[(c+a)−(2b)]2=0[(c+a)−(2b)]2=0
⇒ c+a−2b=0⇒ c+a−2b=0
a + c = 2b
Hence proved!
D=b2−4ac=0D=b2−4ac=0
(b−c)x2+(c−a)x+(a−b)=0 ≡ ax2+bx+c=0(b−c)x2+(c−a)x+(a−b)=0 ≡ ax2+bx+c=0
Here, a =(b-c) , b = (c-a) and c = (a-b)
So, D = (c−a)2−4(b−c)(a−b)=0(c−a)2−4(b−c)(a−b)=0
c2+a2−2ac−4(ab−b2−ac+bc)=0c2+a2−2ac−4(ab−b2−ac+bc)=0
c2+a2−2ac−4ab+4b2+4ac−4bc=0c2+a2−2ac−4ab+4b2+4ac−4bc=0
c2+a2+2ac+4b2−4ab−4bc=0c2+a2+2ac+4b2−4ab−4bc=0
(c+a)2+4b2−4b(a+c)=0(c+a)2+4b2−4b(a+c)=0
(c+a)2+(2b)2−2⋅(c+a)⋅(2b)=0(c+a)2+(2b)2−2⋅(c+a)⋅(2b)=0
[(c+a)−(2b)]2=0[(c+a)−(2b)]2=0
⇒ c+a−2b=0⇒ c+a−2b=0
a + c = 2b
Hence proved!
Similar questions