If the root of x2 + px + 12 = 0 are in the ratio 1:3 then the value of P is
Answers
Answered by
1
Answer:
x^2 + px + 12 = 0
The two roots are: x1 = [-p +(p^2 - 48)^0.5]/2
x2 = [-p -(p^2 - 48)^0.5]/2
Now x1:x2::3:1, or
[-p +(p^2 - 48)^0.5]/2 : [-p -(p^2 - 48)^0.5]/2 :: 3:1 or
[-p +(p^2 - 48)^0.5]/2 =3*[-p -(p^2 - 48)^0.5]/2, or
[-p +(p^2 - 48)^0.5] =3*[-p -(p^2 - 48)^0.5], or
-p + 3p = -3*(p^2 - 48)^0.5 -(p^2 - 48)^0.5, or
2p = -4*(p^2 - 48)^0.5
Squaring both sides we get
4p^2 = 16(p^2 - 48), or
p^2 = 4(p^2 - 48), or
p^2 = 4p^2 - 192, or
3p^2 = 192, or
p^2 = 192/3 = 64, or
p = 8.
Check: x^2 + 8x + 12 = 0
This can be factorized as (x+2)(x+6) = 0
Hence x = -2 or -6. One factor is three times the other.
Step-by-step explanation:
Similar questions