If the roots are real of equation
x² + 4x + k = 0 then k is
explain with steps
Answers
Answered by
0
Answer:
4
Step-by-step explanation:
x² −4x+k=0 is of the form ax
x² −4x+k=0 is of the form ax 2
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=k
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2 −4ac=0
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2 −4ac=0⇒(−4)
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2 −4ac=0⇒(−4) 2
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2 −4ac=0⇒(−4) 2 −4×1×k=0
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2 −4ac=0⇒(−4) 2 −4×1×k=0⇒16−4k=0
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2 −4ac=0⇒(−4) 2 −4×1×k=0⇒16−4k=0⇒−4k=−16
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2 −4ac=0⇒(−4) 2 −4×1×k=0⇒16−4k=0⇒−4k=−16∴k=
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2 −4ac=0⇒(−4) 2 −4×1×k=0⇒16−4k=0⇒−4k=−16∴k= 4
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2 −4ac=0⇒(−4) 2 −4×1×k=0⇒16−4k=0⇒−4k=−16∴k= 416
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2 −4ac=0⇒(−4) 2 −4×1×k=0⇒16−4k=0⇒−4k=−16∴k= 416
x² −4x+k=0 is of the form ax 2 +bx+c=0 where a=1b=−4c=kRoots are equal⇒ Discriminant=0⇒b 2 −4ac=0⇒(−4) 2 −4×1×k=0⇒16−4k=0⇒−4k=−16∴k= 416 =4
Similar questions