If the roots ff the equation (c2 – ab)x2 – 2(a2 – bc)x + b2 – ac = 0 are equal, then prove that either a = 0 or a3 + b3 + c3 = 3abc
Answers
Answered by
1
discriminant =0
4 ( a2- bc)^2 = 4 ( c2- ab) ( b2 - ac)
A2.A2 + bc^2 - 2 a2 bc = c2b2 - c2.ac - ab.b2 + ab.ac
4 ( a2- bc)^2 = 4 ( c2- ab) ( b2 - ac)
A2.A2 + bc^2 - 2 a2 bc = c2b2 - c2.ac - ab.b2 + ab.ac
Similar questions