Math, asked by dranjalisingh4, 18 days ago

if the roots of 1/x-p+1/x-q=1/r are equal in magnitude but opposite in sign, then find the product of roots in p and q only​

Answers

Answered by nishchalpoojary1000
0

Step-by-step explanation:

share

Share

Answer

Correct option is

C

−(

2

p

2

+q

2

)= Product of roots

x+p

1

+

x+q

1

=

r

1

⇒(x+q+x+p)r=(x+p)(x+q)

⇒2xr+(p+q)r=x

2

+(p+q)x+pq

⇒x

2

+(p+q−2r)x+pq−pr−qr=0

As roots are equal in magnitude and opposite the sign

Then sum of roots =0

⇒p+q=2r

Hence, product of roots

pq−pr−qr=pq−

2

(p+q)

2

=−

2

p

2

+q

2

PLEASE MARK ME AS BRAINLIST

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:\dfrac{1}{x - p}  + \dfrac{1}{x - q}  = \dfrac{1}{r}

\rm :\longmapsto\:\dfrac{x - q + x - p}{(x - p)(x - q)}  = \dfrac{1}{r}

\rm :\longmapsto\:\dfrac{2x - q  - p}{(x - p)(x - q)}  = \dfrac{1}{r}

\rm :\longmapsto\:(x - p)(x - q) = r(2x - p - q)

\rm :\longmapsto\: {x}^{2} - px - qx + pq = 2rx - pr - qr

\rm :\longmapsto\: {x}^{2} - px - qx + pq  - 2rx  +  pr  +  qr = 0

\rm :\longmapsto\: {x}^{2} - px - qx   - 2rx  +  pq + pr  +  qr = 0

\rm :\longmapsto\: {x}^{2} - x(p  + q +  2r) +  (pq + pr  +  qr) = 0

So, its a quadratic equation.

Now,

\red{\rm :\longmapsto\:\:Let \:  \alpha , \:  \beta  \: be \: the \: roots \: of \: above \: quadratic.}

Further, It is given that,

\rm :\longmapsto\: \beta  =  -  \:  \alpha

Now, we know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  +  \beta  =  - \:  \dfrac{ - (p + q + 2r)}{1}

\rm :\longmapsto\: \alpha -   \alpha  = p + q + 2r

\rm :\longmapsto\: 0  = p + q + 2r

\bf\implies \:r =  -  \: \dfrac{p + q}{2}

Now,

We know that,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\: \alpha  \beta  = \dfrac{pq + qr + rp}{1}

\rm :\longmapsto\: \alpha  \beta  = pq + r(q + p)

\rm :\longmapsto\: \alpha  \beta  = pq - \dfrac{(p + q)}{2} (q + p)

\rm :\longmapsto\: \alpha  \beta  = pq - \dfrac{(p + q) {}^{2} }{2}

\rm :\longmapsto\: \alpha  \beta  = pq - \dfrac{ {p}^{2}  +  {q}^{2} + 2pq }{2}

\rm :\longmapsto\: \alpha  \beta  =  \dfrac{2pq -  {p}^{2}  -  {q}^{2} -  2pq }{2}

\rm :\longmapsto\: \alpha  \beta  =  \dfrac{ -{p}^{2}-{q}^{2}}{2}

\rm :\longmapsto\: \alpha  \beta  =  -  \:  \dfrac{{p}^{2} + {q}^{2}}{2}

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha +   \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta  +   \beta \gamma   +  \gamma   \alpha =  \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions