Math, asked by kothabalaraju753com1, 7 months ago

if the roots of 2x^2 +kx+3= are real and equal then k=​

Answers

Answered by deve11
1

Step-by-step explanation:

2x² +kx+3=0

If roots are real and equal then discriminant value of equation, b²-4ac=0

b=k, a=2, c=3

b²-4ac=0

k²-4(2)(3)=24

k=√24

k=2√6.

Answered by Anonymous
36

︎︎︎Aɴsᴡᴇʀ :-

  • k = 2√6

︎︎︎Qᴜᴇsᴛɪᴏɴ :-

  • ɪf the roots of 2x² +kx+3= are real and equal then k= ?

︎︎︎Gɪᴠᴇɴ :-

  • Roots are real and equal.
  • 2x² + kx +3

here...... Let coefficient of

  • x² be 'a'
  • x be 'b'

constant be 'c'

︎︎︎Cᴏɴᴄᴇᴘᴛ :-

  • The sum of zeroes of quadratic polynomial is -b/a
  • The product of zeroes of quadratic polynomial is c/a

︎︎︎Sᴏʟᴜᴛɪᴏɴ :-

Let the two zeroes be α and β

So, α+β = -b/a

α+β = -k/2

Since , α=β

  • 2β = -k/2 -----------------(1)

Again, β.α = c/a

  • So, β² = 3/2 ----------------------(2)

From equation (1) , β = -k/4

↪putting this value of β in equation (2).....

 ({ \frac{ -  k}{4}) }^{2}  =  \frac{3}{2}  \\  \\  \frac{ {k}^{2} }{16}  =  \frac{3}{2}  \\  \\  {k}^{2}  = 24 \\  \\ k =  \sqrt{2 \times 2 \times 2 \times 3}  \\  \\ k = 2 \sqrt{6}

★Vᴇʀɪғɪᴄᴀᴛɪᴏɴ :-

2x² + 2√6x + 3 = 0

roots \:  =  \frac{ - b \binom{ + }{ - }  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  =  \frac{ - 2 \sqrt{6}  \binom{ + }{ - }  \sqrt{( {2 \sqrt{6} )}^{2} - 4(2)(3) } }{2(2)}  \\  \\  =  \frac{ - 2 \sqrt{6}  \binom{ + }{ - }  \sqrt{24 - 24} }{4}  \\  \\  roots \:  =  \frac{ - 2 \sqrt{6} + 0 }{4} ..... \frac{ - 2 \sqrt{6}  - 0}{4}  \\  \\ roots \:  =  \frac{ -  \sqrt{6} }{2} ...... \frac{ -  \sqrt{6} }{2}

Sᴏ, ᴛʜᴇ ʀᴏᴏᴛs ᴀʀᴇ ᴇǫᴜᴀʟ.....

ᴡᴇ ᴄᴀɴ ɴᴏᴡ ᴄᴏɴᴄʟᴜᴅᴇ ᴛʜᴀᴛ

k = 2√6 (verified)

mark as brainliest....✌️✌️

Similar questions