Math, asked by RituKanke, 3 months ago

If the roots of 2z^2-6x+k =0 are real and equal the find k​

Answers

Answered by vinshultyagi
23

 \Huge \bf \green{Solution:-}

The roots of the quadratic equation are real and equal.

\bf  ∴ b² - 4ac = 0

\bf (-6)² - 4 × 2 × k = 0

\bf - 8k = -36

\bf k = \dfrac{9}{ 2}


RituKanke: thanks a lot
Answered by ItzBrainlyBeast
21

\LARGE\mathfrak{\underline{\underline{✪\: \: \: Answer  :-}}}

\large\: \bigstar\textsf\textcolor{orange}{\: \: \: 2z² - 6x + k = 0}

__________________________________________________________

➛ Comparing this equation with :-

\large\: \bigstar\textsf\textcolor{orange}{\: \: \: az² + bz + c = 0 }

__________________________________________________________

➛ Here :-

\large: \: \Longrightarrow\textsf{\: \: \: a = 2 \: \: \: b = - 6 \: \: \: c = k}\\\\\\\large\: \bigstar\textsf\textcolor{orange}{\: \: \: ∆ = b² - 4ac . }\\\\\\\large: \: \Longrightarrow\textsf{= ( - 6 )² - 4 × 2 × k}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{magenta}{∆ = 36 - 8k}}}

__________________________________________________________

  • The roots are real and equal so , must be ' zero ' .

__________________________________________________________

\large: \: \Longrightarrow\textsf{- 8k + 36 = 0}\\\\\\\large: \: \Longrightarrow\textsf{- 8k = -36 }\\\\\\\large: \: \Longrightarrow\textsf{$ k = \cfrac{- 36}{- 8}$}\\\\\\\large: \: \Longrightarrow\textsf{$ k = \cancel\cfrac{- 36 }{ - 8 }$}\\\\\\\large  \: \therefore\underline{\boxed{\textsf\textcolor{magenta}{ $k =\cfrac { 9 }{2}$}}}

__________________________________________________________


ItzBrainlyBeast: hu
somya2563: Mein khoj lugi... Bohot hai btw thanks nd bye
ItzBrainlyBeast: okay....Tata....
ItzBrainlyBeast: one line for you....
ItzBrainlyBeast: Ooo mujhe chood Kar bada Pacataoge bada Pacataoge...XD
somya2563: meinne tumse breakup thodi na kiya hai.... lol
ItzBrainlyBeast: Oooo...
somya2563: hn ji
ItzBrainlyBeast: okay somya ji....and agar Mene aapko inbóx kal Diya to
ItzBrainlyBeast: (⌐■-■)
Similar questions