If the roots of an auxillary equation are m1=0,m2=2m1=0,m2=2, then the auxillary equation is ...............
Select one:
a. 2m2−m=02m2−m=0
b. m2−2m=0m2−2m=0
c. m2−2m+1=0m2−2m+1=0
d. 2m2−m+1=02m2−m+1=0
e. m2−m=1m2−m=1
Answers
Answered by
0
Given Quadratic equation :
(1+m²)x²+2mcx+(c²-a²)=0
Compare above equation with
Ax²+Bx+C=0 ,we get
A=(1+m²), B = 2mc, C = (c²-a²)
Discreminant (D) = 0
=> B²-4AC = 0 /* Given roots are equal */
=> (2mc)²-4(1+m²)(c²-a²)=0
=> 4m²c²-4(c²-a²+m²c²-m²a²)=0
=> 4[m²c²-(c²-a²+m²c²-m²a²)]=0
=> m²c²-c²+a²-m²c²+m²a² =0
=> -c²+a²+m²a²=0
=> a²(1+m²) = c²
Therefore,
c² = a²(1+m²)
••••
Similar questions