Math, asked by ali3745, 9 months ago

If the roots of an auxillary equation are m1=0,m2=2m1=0,m2=2, then the auxillary equation is ...............

Select one:

a. 2m2−m=02m2−m=0

b. m2−2m=0m2−2m=0

c. m2−2m+1=0m2−2m+1=0

d. 2m2−m+1=02m2−m+1=0

e. m2−m=1m2−m=1

Answers

Answered by sahatrupti21
0

Given Quadratic equation :

(1+m²)x²+2mcx+(c²-a²)=0

Compare above equation with

Ax²+Bx+C=0 ,we get

A=(1+m²), B = 2mc, C = (c²-a²)

Discreminant (D) = 0

=> B²-4AC = 0 /* Given roots are equal */

=> (2mc)²-4(1+m²)(c²-a²)=0

=> 4m²c²-4(c²-a²+m²c²-m²a²)=0

=> 4[m²c²-(c²-a²+m²c²-m²a²)]=0

=> m²c²-c²+a²-m²c²+m²a² =0

=> -c²+a²+m²a²=0

=> a²(1+m²) = c²

Therefore,

c² = a²(1+m²)

••••

Similar questions