Math, asked by lakshya14, 1 year ago

if the roots of equation (a-b)X^2+(b-c)X+(c-a)=0 are equal roots prove that 2a=b+c

Answers

Answered by frank55oops
18
For roots to be equal :  b^{2} = 4ac;
 (b-c)^{2} = 4*(a-b)(c-a)
 b^{2}  c^{2} + 2bc = -4 a^{2} - 4bc - 4ab  + 4ac
4 a^{2}  b^{2}  c^{2} + 4ab - 4ac + 2bc = 0
above equation is similar to  (a+b+c)^{2} = 0 , except 'a' replaced by '-2a'
 (-2a + b + c)^{2} = 0
-2a + b +c = 0
2a = b + c

Answered by shadowsabers03
14

p(x) = (a-b)x^2+(b-c)x+(c-a)=0 \\ \\ \\ A=(a-b) \\ \\ B=(b-c) \\ \\ C=(c-a)

 

Here given that the roots of p(x) are equal. So the discriminant will be zero.    

 

So,  

 

B^2-4AC = 0 \\ \\ (b-c)^2-(4(a-b)(c-a)) = 0 \\ \\ (b^2-2bc+c^2)-(4(ac-a^2-bc+ab)) = 0 \\ \\ (b^2-2bc+c^2)-(4(ab-bc+ac-a^2)) = 0 \\ \\ (b^2-2bc+c^2)-(4ab-4bc+4ac-4a^2)=0 \\ \\ b^2-2bc+c^2-4ab+4bc-4ac+4a^2=0 \\ \\ 4a^2+b^2+c^2-4ab+2bc-4ac=0 \\ \\ (2a-b-c)^2=0 \\ \\ 2a-b-c=0 \\ \\ 2a=b+c

 

Hence proved!!!

Similar questions