Math, asked by shreyapjain, 7 months ago

if the roots of quadratic equation (a^+b^)x^+2( bc -ad)+c^+d^=0 are equal .show that ac+ bd=0​

Answers

Answered by BrainlyQueen01
50

Given equation :

  • (a² + b²)x² + 2(bc - ad)x + (c² + d²)

To prove :

  • ac + bd = 0

Proof :

We know that,

The standard form of the quadratic equation is ax² + bx + c = 0. Here,

  • a = (a² + b²)
  • b = 2(bc - ad)
  • c = (c² + d²)

It is given that, the roots of the equation are zero. Thus, discriminant is zero.

Discriminant = b² - 4ac = 0

\Rightarrow \sf \{2(bc-ad)\}^2 - 4(a^2 + b^2)(c^2 + d^2)=0\\\\\Rightarrow \sf 4(bc-ad)^2 - 4(a^2 + b^2)(c^2 + d^2)=0\\\\\Rightarrow \sf 4 [(bc-ad) ^2 - (a^2 + b^2)(c^2 + d^2)] =0\\\\\Rightarrow \sf (bc-ad) ^2 - (a^2 + b^2)(c^2 + d^2)= 0\\\\\Rightarrow \sf b^2c^2 + a^2d^2 - 2abcd - a^2 c^2 - a^2 d^2 - b^2 c^2 - b^2 d^2 = 0 \\\\\Rightarrow \sf - a^2 c^2 - b^2 d^2 - 2abcd = 0 \\\\\Rightarrow \sf - (a^2 c^2 +b^2 d^2 + 2abcd) = 0\\\\\Rightarrow \sf a^2 c^2 +b^2 d^2+2abcd= 0

Compare the above equation with

  • a² + b² + 2ab = (a+b)²

We get ;

\Rightarrow \sf (ac+bd)^2 = 0\\\\\Rightarrow \sf ac + bd = 0

Hence, it is proved.

_______________________

Identities used :

  • (a - b)² = a² - 2ab + b²
  • (a + b)² = a² + 2ab + b²
Answered by RvChaudharY50
29

Concept :-

If A•x^2 + B•x + C = 0 ,is any quadratic equation,

then its discriminant is given by;

D = B^2 - 4•A•C

• If D = 0 , then the given quadratic equation has real and equal roots.

• If D > 0 , then the given quadratic equation has real and distinct roots.

• If D < 0 , then the given quadratic equation has unreal (imaginary) roots.

________________

Solution :-

Since Roots Are Equal . So, D = 0 .

→ (a² + b²) x² + 2(bc – ad) x + (c² + d²) = 0 = A•x^2 + B•x + C = 0

comparing we get :-

A = (a² + b²)

→ B = 2(bc – ad)

→ C = (c² + d²)

Putting all values in D = 0 Now, we get ,

B^2 - 4•A•C = 0

→ [2(bc – ad)]² - 4 * (a² + b²) * (c² + d²) = 0

→ [4(b²c² + a²d² - 2abcd)] - 4[a²c² + a²d²+ b²c² + b²d²] = 0

→ [4b²c² + 4a²d² - 8abcd] - [4a²c² + 4a²d²+ 4b²c² + 4b²d²] = 0

→ 4b²c² + 4a²d² - 8abcd - 4a²c² - 4a²d² - 4b²c² - 4b²d² = 0

→ - 8abcd - 4a²c² - 4b²d² = 0

→ -4(2abcd + a²c² + b²d²) = 0

→ a²c² + b²d² + 2abcd = 0

comparing with + + 2ab = (a + b)² , we get,

[ ac + bd]² = 0

Hence,

(ac + bd) = 0 (Proved).

Similar questions