Math, asked by gayatribiradar682, 7 months ago

If the roots of quadratic equation
a {x}^{2}  + cx + c = 0
are in ratio p:q , show that
 \sqrt{ \frac{p}{q} }  +  \sqrt{ \frac{q}{p} }  +  \sqrt{ \frac{c}{a} }  = 0
where a and c are real number .


**Please Answer It.....(Don't Spam) & **Irrilivant Answers**​

Answers

Answered by Gujjar99
2

Answer:

hlo dear

Good evening

god bless you

and mark me as brain list

Answered by Anonymous
4

i hope u understand dear.......

Step-by-step explanation:

: \sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{c}{a}}=0

q

p

+

p

q

+

a

c

=0

Given quadratic equation,

ax^{2}+cx+c=0ax

2

+cx+c=0

Roots are in the ratio p:q.

Let the roots be pk, qk.

sum of the roots = -c/a

pk + qk = -c/a

p + q = (-c/a)(1/k) --------------(1)

product of roots = c/a

pk.qk = c/a

pq=\frac{c}{a}.\frac{1}{k^{2} }pq=

a

c

.

k

2

1

applying root on both sides

\sqrt{pq}=\sqrt{ \frac{c}{a}}.\frac{1}{k}

pq

=

a

c

.

k

1

----------------(2)

Dividing (1) by (2)

\frac{p+q}{\sqrt{pq} }=\frac{(-c/a)(1/k)}{\sqrt{\frac{c}{a} }(1/k) }

pq

p+q

=

a

c

(1/k)

(−c/a)(1/k)

\frac{p}{\sqrt{pq} }+\frac{q}{\sqrt{pq} }=-\sqrt{\frac{c}{a}}.\sqrt{\frac{c}{a}}/\sqrt{\frac{c}{a}}

pq

p

+

pq

q

=−

a

c

.

a

c

/

a

c

\frac{\sqrt{p}\sqrt{p} }{\sqrt{pq}}+\frac{\sqrt{q}\sqrt{q} }{\sqrt{pq}}=-\sqrt{\frac{c}{a} }

pq

p

p

+

pq

q

q

=−

a

c

\sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}=-\sqrt{\frac{c}{a}}

q

p

+

p

q

=−

a

c

\sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{c}{a}}=0

q

p

+

p

q

+

a

c

=0

Similar questions