Math, asked by kakshay6042, 1 year ago

if the roots of the equation 12x^2+mx+5=0 are real and equal then m is.

Answers

Answered by priyash2003
14

Let the roots be α,β

αβ=32

α+β=−m12

αβ=512

α=32β⇒32β2=512

⇒β2=1036⇒β=−10−−√6

α=32β=−10−−√4

m=−12(α+β)

=12(10−−√6+10−−√4)

=510−−√

Hence (D) is the correct answer.

Answered by tanvigupta426
0

Answer:

The correct answer is &\pm 4 \sqrt{15}.

Step-by-step explanation:

Given:

The roots of the given equation is $12 x^{2}+m x+5=0$ are real and equal.

To find:

the value of m.

Step 1

Given that roots of the equation $12 x^{2}+m x+5=0$ are real and equal.

Therefore,  $m^{2}-4 \times 12 \times 5=0 \\

&\Rightarrow m^{2}=240 \\

&\Rightarrow m^{2}=16 \times 15 \\

Simplify $$m^{2}=240$$

Step 2

For $x^{2}=f(a)$ the solutions are $x=\sqrt{f(a)},-\sqrt{f(a)}$

Where, $m=\sqrt{240}  and $ m=-\sqrt{240}$

$$m^{2}-4 \times 12 \times 5=0$$

Add $4 \times 12 \times 5$ to both sides

$$m^{2}-4 \times 12 \times 5+4 \times 12 \times 5=0+4 \times 12 \times 5$$

Simplifying the above equation as

$\sqrt{240}=4 \sqrt{15}$

$-\sqrt{240}=-4 \sqrt{15}$

&m=\pm 4 \sqrt{15}

$m=4 \sqrt{15}  and m=-4 \sqrt{15}$

Therefore, the correct answer is &\pm 4 \sqrt{15}.

#SPJ3

Similar questions