Math, asked by samsha1610, 1 year ago

if the roots of the equation 12x^2-mx+b=0 are in the ratio 2:3 then find m

Answers

Answered by EmadAhamed
6
↑ Here is your answer 
_____________________________________________________________
_____________________________________________________________

12x^2-mx+b=0

The zeroes are '2a' and '3a'

We know that sum of roots = -b/a

2a + 3a = m/12

5a = m/12

60a = m

a = m/60

a^2 = m^2/3600

Now,

Product of roots = c/a

2a * 3a = b/12

6a^2 = b/12

72a^2 = b

a^2 = b/72

Now equate a²

b/72 = m^2/3600

3600b = 72m^2

m^2 = 3600b/72

m^2 = 50b

m =  \sqrt{50b}

____________________________________________________________________________________________________________________________

Glad to help you.
@EmadAhamed

HarishAS: Perfect bro.
EmadAhamed: Ooh thanks! I thought it was not precise :/
HarishAS: But take them as 2a & 3a .
HarishAS: or some other thing.
HarishAS: Because already x is a variable of the equation
EmadAhamed: oh ty wait
Similar questions