Math, asked by Deesh567, 3 months ago

If the roots of the equation 6x2 - 13x + m = 0 are reciprocal of each other, find the
value of m.

Answers

Answered by SuitableBoy
117

Answer:

 \\

» Let one root of the equation be \bf{y} .

So,

» Second root = \dfrac{1}{\bf y} .

 \\

Now,

★ Standard Quadratic Equation is in the form :

 \\

\mapsto\:\boxed{\sf ax^2 + bx + c}

 \\

» Compare it with given equation

 \\

We get :

  • a = 6
  • b = -13
  • c = m

Now,

 \\

We know

» Product of the zeroes / roots = \dfrac{\sf c}{\sf a}

So,

 \colon \longrightarrow \bf \: y \times  \dfrac{1}{y}  =  \dfrac{m}{6}  \\  \\

 \colon \longrightarrow \bf \: 1 =  \dfrac{m}{6}  \\  \\

  \colon \longrightarrow \bf \: 1 \times 6 = m \\  \\

 \purple{ \colon \longrightarrow} \bf \:    \underline{ \boxed{\pink{ \bf{m = 6}}}} \quad \blue \bigstar

 \\

\green\therefore\;\underline{\sf The\:value\:of\:m\:is\:\red{\bf 6}.}

 \\

_____________________________

Answered by pratyushara987
126

Answer:

 \sf» Let  \: one  \: root  \: of  \: the  \: equation \:  be  \: \bf{y}

So,

 \sf» Second\: root = \dfrac{1}{\bf y}y1

 \sf \red» Second  \: root = \dfrac{1}{\bf y}y \: 1

Now,

★ Standard Quadratic Equation is in the form :

\mapsto\:\boxed{\sf ax^2 + bx + c}\begin{gathered} \\ \end{gathered}

 \sf \frak \orange{» Compare \:  it  \: with  \: given \:  equation}

We get :

a = 6

b = -13

c = m

Now,

We know,

 \sf \purple{» Product \:  of  \: the \:  zeroes  \:  roots = \dfrac{\sf c}{\sf a}ac}

So,

 \pink{\begin{gathered} \colon \longrightarrow \bf \: y \times \dfrac{1}{y} = \dfrac{m}{6} \\ \\ \end{gathered}}

 \sf \begin{gathered} \colon \longrightarrow \bf \: 1 = \dfrac{m}{6} \\ \\ \end{gathered}

 \green{\begin{gathered} \colon \longrightarrow \bf \: 1 \times 6 = m \\ \\ \end{gathered}}

\purple{ \colon \longrightarrow} \bf \: \underline{ \boxed{\pink{ \bf{m = 6}}}} \quad \blue \bigstar

\green\therefore\;\underline{\sf The\:value\:of\:m\:is\:\red{\bf 6}.}

__________________________

Similar questions