Math, asked by fatima5000, 10 months ago

If the roots of the equation (a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0 are equal then prove that ad=bc

Answers

Answered by nirmalyarajsethi
3

Answer:Pls Mark It As Brainliest!!

Step-by-step explanation:

Séè thë ãttâçhmēñt.

Attachments:
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
1

Answer:

ad = bc

Step-by-step explanation:

Given that :

The roots of the quadratic equation,                (a² + b²)x² - 2(ac + bd)x + (c² + d²) = 0 are equal.

To prove :

ad = bc

Proof :

We know that,

The standard form of a quadratic equation is ax² + bx + c = 0. Here,

a = (a² + b²)

a = (a² + b²) b = - 2(ac + bd)

a = (a² + b²) b = - 2(ac + bd) c = (c² + d²)

It is given that the roots are equal, therefore discriminant is zero.

Discriminant = b² - 4ac = 0

⇒ b² - 4ac = 0

⇒ {- 2(ac + bd)}² - 4(a² + b²)(c² + d²) = 0

⇒ 4(ac + bd)² - 4(a² + b²)(c² + d²) = 0

⇒ 4 [ (ac + bd)² - (a² + b²)(c² + d²) ] = 0

⇒ (ac + bd)² - (a² + b²)(c² + d²) = 0

⇒ a²c² + b²d² + 2. ac. bd - a²c² - a²d² - b²c² - b²d² = 0

⇒ - a²d² - b²c² + 2abcd = 0

⇒ - (a²d² + b²c² - 2abcd) = 0

⇒ a²d² + b²c² - 2abcd = 0

⇒ (ad - bc)² = 0

⇒ ad - bc = 0

⇒ ad = bc

Hence, it is proved.

Similar questions