If the roots of the equation ( a^2 + b^2 ) x^2 - 2 ( ac+ bd )x + ( c^2 + d^2 ) = 0 have equal roots . prove that a/b = c/d .
Answers
Answered by
18
Given Equation is (a^2 + b^2)x^2 - 2(ac + bd)x + (c^2 + d^2) = 0
On comparing with ax^2 + bx + c = 0, we get a = a^2 + b^2, b = -2(ac + bd) , c = c^2 + d^2.
Given that The equation has equal roots.
= > D = 0
= > b^2 - 4ac = 0
= > b^2 = 4ac.
= > (-2(ac + bd))^2 = 4(a^2 + b^2)(c^2 + d^2)
= > 4(a^2c^2 + b^2d^2 + 2abcd) = 4(a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2)
= > a^2c^2 + b^2d^2 + 2abcd - a^2c^2 - a^2d^2 - b^2c^2 - b^2d^2
= > 2abcd - a^2d^2 - b^2c^2 = 0
= > a^2d^2 + b^2c^2 - 2abcd = 0
= > (ad - bc)^2 = 0
= > ad = bc
= > a/b = c/d
Hope this helps!
siddhartharao77:
No thanks sis!
Similar questions