Math, asked by kalyanreddy50, 10 months ago

"If the roots of the equation
a(b-c) x^2+b(c-a) x+c(a-b) =0Are equal then show that 2/b=1/a+1/c​

Answers

Answered by BrainlyPopularman
3

GIVEN :

A quadratic equation a(b-c) x² + b(c-a)x + c(a-b) =0 have equal roots.

TO PROVE :

  \\  \sf \implies \dfrac{2}{b} =  \dfrac{1}{a}    +  \dfrac{1}{c} \\

SOLUTION :

• If roots of a quadratic equation are equal then Discriminant –

 \\ \longrightarrow \large { \boxed{ \sf D = 0}}\\

 \\ \longrightarrow \large { \boxed{ \sf  {b}^{2} - 4ac = 0}}\\

• Here –

 \\  \:  \:  \:  \:  \:  \:  \: { \huge{.}}  \:  \:  \:  \sf \: a = a(b - c)\\

 \\  \:  \:  \:  \:  \:  \:  \: { \huge{.}}  \:  \:  \:  \sf \: b = b(c-a)\\

 \\  \:  \:  \:  \:  \:  \:  \: { \huge{.}}  \:  \:  \:  \sf \: c = c(a-b)\\

• So that –

 \\ \implies \sf  {b}^{2} - 4ac = 0\\

 \\ \implies \sf  {b}^{2}  =  4ac \\

• Now put the values –

 \\ \implies \sf  { \{b(c - a) \}}^{2}  =  4 \{a(b - c) \} \{c(a - b) \} \\

 \\ \implies \sf  { {b}^{2} (c - a) }^{2}  =  4ac(b - c)(a - b)\\

 \\ \implies \sf  {b}^{2} ( {c}^{2}   +  {a}^{2} - 2ac )  =  4ac(ba -  {b}^{2} - ca + bc)\\

 \\ \implies \sf   {b}^{2} {c}^{2}  +  {b}^{2} {a}^{2} - 2a {b}^{2}c= 4 {a}^{2}bc - 4a {b}^{2}c - 4 {a}^{2} {c}^{2} +4ab {c}^{2}\\

 \\ \implies \sf   {b}^{2} {c}^{2}  +  {b}^{2} {a}^{2}  + 2a {b}^{2}c -  4 {a}^{2}bc  + 4 {a}^{2} {c}^{2}  - 4ab {c}^{2} = 0\\

• We should write this as –

 \\ \implies \sf  {(bc + ba)}^{2} - 4ac(ab - ac + bc)= 0\\

• Now –

 \\ \implies \sf  {(bc + ba)}^{2} - 4ac(ab - ac + bc + ac - ac)= 0\\

 \\ \implies \sf  {(bc + ba)}^{2} - 4ac(ab - 2ac + bc ) - 4 {(ac)}^{2} = 0\\

 \\ \implies \sf  {(bc + ba)}^{2}  - {(2ac)}^{2} = 4ac(ab - 2ac + bc )\\

• Using identity –

 \\ \longrightarrow  \:  \: \sf  {a}^{2}  - {b}^{2} = (a + b)(a - b)\\

• So that –

 \\ \implies \sf  { \cancel{(bc + ba - 2ac)}}(bc + ba + 2ac)= 4ac{ \cancel{(ab - 2ac + bc )}}\\

 \\ \implies \sf (bc + ba + 2ac)= 4ac\\

 \\ \implies \sf bc + ba = 2ac\\

• Now divided by (abc) on both sides –

 \\ \implies \sf  \dfrac{bc + ba}{abc} =  \dfrac{2ac}{abc}\\

 \\ \implies \sf  \dfrac{bc}{abc} + \dfrac{ba}{abc} =  \dfrac{2ac}{abc}\\

 \\ \implies \sf  \dfrac{1}{a} + \dfrac{1}{c} =  \dfrac{2}{b}\\

 \\ \implies \sf  Hence \:  \: proved\\

 \\ \rule{220}{2} \\

Similar questions