Math, asked by dhritigna5, 2 months ago

If the roots of the equation (a-b)x^2+(b-c)x+( c-a)=0 are equal then prove that 2a= b+c

Attachments:

Answers

Answered by vipashyana1
1

\mathfrak{\huge{Answer:-}} \\ \bold{(a - b){x}^{2}  +  (b - c)x + (c - a) = 0}  \\ a = (a - b) \: b = (b - c) \: c = (c - a)\\ It  \: has \:  equal  \: roots,  \:  then  \\Discriminant  = 0 \\  {b}^{2}  - 4ac = 0 \\  {(b - c)}^{2}  - 4(a - b)(c - a) = 0 \\   {b}^{2}  +  {c}^{2}  - 2bc - 4[a(c - a) - b(c - a)] = 0 \\  {b}^{2}  +  {c}^{2}  - 2bc - 4(ac -  {a}^{2} - bc + ab) = 0 \\  {b}^{2}  +  {c}^{2}  - 2bc - 4ac + 4 {a}^{2}  + 4bc - 4ab = 0 \\  4 {a}^{2}  + {b}^{2}  +  {c}^{2}  - 4ab - 2bc + 4bc - 4ac = 0 \\ 4 {a}^{2}  +  {b}^{2}  +  {c}^{2}  - 4ab + 2bc - 4ab = 0 \\  {(2a)}^{2}  +  {(b)}^{2} +  {(c)}^{2}   - 2(2a)(b) + 2(b)(c) - 2(c)(2a)\\  Using \:  the \:  identity :-  \:  \: {a}^{2}  +  {b}^{2}  +  {c}^{2}  - 2ab + 2bc - 2ca =  {(a - b - c)}^{2}  \\ a = 2a, \: b = b ,\: c = c \\  {(2a - b - c)}^{2}  = 0 \\ 2a - b - c =  \sqrt{0}  \\ 2a - b - c = 0 \\ 2a = b + c \\ Hence \:  proved

Similar questions
Math, 9 months ago