if the roots of the equation (a-b)x^2 + (b-c)x +(c-a)=0 are equal prove that 2a= b+c please solve it in simple method
Answers
Answered by
9
● Quadratic equations ●
Given equation : - (a - b)² + (b - c)x + (c - a)
The roots of the equation are equal.
To prove : - 2a = b + c.
That means, the discriminant = D = B² - 4AC = 0
So,here,
B = (b - c), A = (a - b) and C = (c - a)
B² - 4AC = 0
=> (b - c)² - 4 × (a - b) × (c - a) = 0
=> b² - 2bc + c² - 4(ac - a² - bc + ab) = 0
=> b² - 2bc + c² - 4ac + 4a² + 4bc - 4ab = 0
=> b² + 2bc + c² - 4ac + 4a² + 4bc - 4ab = 0
=> (b + c)² - 4ab - 4bc + 4a² = 0
=> (b + c)² - 4a(b + c) + 4a² = 0
=> (b + c)² - 2a(b + c) - 2a(b + c) + 4a² = 0
=> (b + c)[(b + c) - 2a] - 2a[(b + c) - 2a] = 0
=> (b + c - 2a)(b + c - 2a) = 0
=> (b + c - 2a)² = 0
=> b + c - 2a = 0
=> b + c = 2a
=> 2a = b + c
Hence, proved.
Given equation : - (a - b)² + (b - c)x + (c - a)
The roots of the equation are equal.
To prove : - 2a = b + c.
That means, the discriminant = D = B² - 4AC = 0
So,here,
B = (b - c), A = (a - b) and C = (c - a)
B² - 4AC = 0
=> (b - c)² - 4 × (a - b) × (c - a) = 0
=> b² - 2bc + c² - 4(ac - a² - bc + ab) = 0
=> b² - 2bc + c² - 4ac + 4a² + 4bc - 4ab = 0
=> b² + 2bc + c² - 4ac + 4a² + 4bc - 4ab = 0
=> (b + c)² - 4ab - 4bc + 4a² = 0
=> (b + c)² - 4a(b + c) + 4a² = 0
=> (b + c)² - 2a(b + c) - 2a(b + c) + 4a² = 0
=> (b + c)[(b + c) - 2a] - 2a[(b + c) - 2a] = 0
=> (b + c - 2a)(b + c - 2a) = 0
=> (b + c - 2a)² = 0
=> b + c - 2a = 0
=> b + c = 2a
=> 2a = b + c
Hence, proved.
Similar questions