If the roots of the equation (a-b)x^2 + (b-c)x + (c-a) are equal, prove that b+c= 2a.
Answers
Answered by
2
If the quadratic equation ax²+bx+c=0
whose roots are equal then it's
deteminant is equal to zero.
(a-b)x²+(b-c)x+(c-a)=0
Deteminant =0
(b-c)² -4(a-b)(c-a)==0
b²+c²-2bc-4ac+4a²+4bc-4ab=0
b²+c²+4a²+4bc-4ac-4ab=0
b²+c²+(-2a)²+2bc+2c(-2a)+2(-2a)b=0
(b+c-2a)²=0
b+c-2a=0
Therefore,
b+c=2a
Hence proved.
whose roots are equal then it's
deteminant is equal to zero.
(a-b)x²+(b-c)x+(c-a)=0
Deteminant =0
(b-c)² -4(a-b)(c-a)==0
b²+c²-2bc-4ac+4a²+4bc-4ab=0
b²+c²+4a²+4bc-4ac-4ab=0
b²+c²+(-2a)²+2bc+2c(-2a)+2(-2a)b=0
(b+c-2a)²=0
b+c-2a=0
Therefore,
b+c=2a
Hence proved.
Similar questions
English,
7 months ago
Hindi,
7 months ago
World Languages,
7 months ago
Environmental Sciences,
1 year ago
Science,
1 year ago
Math,
1 year ago
English,
1 year ago