Math, asked by rima20048, 11 months ago

if the roots of the equation a minus b x square + b minus C X + c minus A is equal to zero of equal prove that to a equal to b + c​

Answers

Answered by spiderman2019
109

Answer:

Step-by-step explanation:

We know that,  If the quadratic equation ax²+bx+c=0  whose roots are equal then it's  deteminant is equal to zero.

(a-b)x² + (b-c)x + (c-a) = 0

(b-c)² - 4 (a-b)(c-a) = 0

b²+c² - 2bc - 4(ac - a² -bc +ba) = 0

b²+ c² -2bc + 4a²+4bc-4ac-4ab=0

b²+ c² +2bc+ 4a²-4ac-4ab = 0

b²+ c² + 2bc + (-2a)² + 2(-2a)(c)+2(-2a)(b) = 0

(b + c - 2a)² = 0

b + c - 2a = 0

2a = b + c

Hence proved.

Answered by VishalSharma01
206

Answer:

Step-by-step explanation:

Solution :-

(a - b)x² + (b - c)x + (c - a) = 0

The roots are equal, then D = 0

Comparing Eq by ax² + bx + c = 0

a = (a - b), b = (b - c), c = (c - a)

D = b² - 4ac

= (b - c)² - 4 × (a - b) (c - a)

Here, D = 0

(b - c)² - 4(a - b) (c - a) = 0

⇒ b² + c² - 2bc - 4(ac - a² - bc + ab) = 0

⇒ b² + c² - 2bc - 4ac + 4a² + 4bc - 4ab = 0

⇒ 4a² + b² + c² + 2bc - 4ab - 4ac = 0

⇒ (- 2a + b + c)² = 0   [a² + b² + c² + 2ab + 2bc + 2ca = (a + b + c)²]

b + c = 2a

Hence, Proved.

Similar questions