if the roots of the equation(a²+b²)x²-2(ab+cd)x+(c²+d²)=0 are real and equal,prove that a/b=c/d.please give the solution also
Answers
Answered by
1
Hey
Your question should be :-
( a² + b² )x² - 2 ( ac + bd )x + ( c² + d² ) = 0
Here ,
a = ( a² + b² )
b = -2( ac + bd )
c = ( c² + d² )
Now ,
Given that :- The roots are real and equal .
So ,
D = 0
b² - 4ac = 0
Now , putting value of a , b & c , we get ,
=> [ -2( ac + bd ) ]² - 4 ( a² + b² ) ( c² + d² )
= 0
=> 4 ( a²c² + b²d² + 2abcd ) - 4 ( a²c² + a²d² + b²c² + b²d² ) = 0
=> 4a²c² + 4b²d² +8abcd - 4a²c² - 4a²d² - 4b²c² - 4b²d² = 0
=> - 4a²d² - 4b²c²+ 8abcd = 0
=> -4 ( a²d² + b²c² - abcd ) = 0
NoTe :- This is in the form of ( a² + b² - 2ab ) , so it will be ( a - b ) ²
=> ( ad - bc ) ² = 0
=> ad - bc = 0
=> ad = bc
=> a / b = c / d
♦ PROVED ♦
thanks :)
Your question should be :-
( a² + b² )x² - 2 ( ac + bd )x + ( c² + d² ) = 0
Here ,
a = ( a² + b² )
b = -2( ac + bd )
c = ( c² + d² )
Now ,
Given that :- The roots are real and equal .
So ,
D = 0
b² - 4ac = 0
Now , putting value of a , b & c , we get ,
=> [ -2( ac + bd ) ]² - 4 ( a² + b² ) ( c² + d² )
= 0
=> 4 ( a²c² + b²d² + 2abcd ) - 4 ( a²c² + a²d² + b²c² + b²d² ) = 0
=> 4a²c² + 4b²d² +8abcd - 4a²c² - 4a²d² - 4b²c² - 4b²d² = 0
=> - 4a²d² - 4b²c²+ 8abcd = 0
=> -4 ( a²d² + b²c² - abcd ) = 0
NoTe :- This is in the form of ( a² + b² - 2ab ) , so it will be ( a - b ) ²
=> ( ad - bc ) ² = 0
=> ad - bc = 0
=> ad = bc
=> a / b = c / d
♦ PROVED ♦
thanks :)
Similar questions