If the roots of the equation (a²+ b²)x² − 2 (ac + bd)x + (c² + d²) = 0 are equal, prove that .
Answers
SOLUTION :
Given : (a² + b²)x² - 2( ac + bd)x + ( c² + d²) = 0
On comparing the given equation with ax² + bx + c = 0
Here, a = (a² + b²) , b = - 2( ac + bd) , c = ( c² + d²)
D(discriminant) = b² – 4ac
Given roots are equal so, D = b² - 4ac =0
{2(ac + bd)}² - 4(a² +b²)(c² + d²) = 0
4(ac + bd)² - 4(a² + b²)(c²+ d²) = 0
4(a²c²+ b²d² + 2abcd ) - 4( a²c² + a²d² + b²d² + b²c² = 0
[(a + b)² = a² + b² + 2ab]
4(a²c² + b²d² + 2abcd - a²c² - a²d² - b²d² - b²c² ) = 0
(a²c² - a²c² + b²d² - b²d² + 2abcd - a²d² - b²c² ) = 0
2abcd - a²d² - b²c² = 0
-(a²d² + b²c² - 2abcd) = 0
a²d² + b²c² - 2abcd = 0
(ad)² + (bc)² - 2×ad × bc = 0
(ad - bc)² = 0
[(a - b)² = a² + b² - 2ab]
Square root both sides,
ad - bc = 0
ad = bc
a/b = c/d
Hence, proved a/b = c/d
HOPE THIS ANSWER WILL HELP YOU…
(a2 + b2)x2 - 2(ac+bd)x + (c2 + d2) = 0
To prove:
a / b = c / d
PROOF:
we know that
D = b2 - 4ac = 0 (for equal roots)
b2 = 4ac
{-2(ac + bd)}2 = 4{(a2 + b2) (c2 + d2)}
4(a2c2 + b2d2 +2acbd) = 4(a2c2 + a2d2 + b2c2 + b2d2)
2acbd = a2d2 + b2c2
a2d2 + b2c2 - 2abcd = 0
(ad - bc)2 = 0
Taking square root on both sides
ad - bc = 0
ad = bc
a / b = c / d
hence proved.
Please mark as Brainliest if you like my answer.