if the roots of the equation (b-c)x^2+(c-a)x+(a-b)=0, are equal, then prove that 2b=a+c
Answers
Here it is .... Your answer
SOLUTION :
Given : (b - c) x² + (c - a)x + (a - b) = 0 .
On comparing the given equation with ax² + bx + c = 0
Here, a = (b - c), b = (c - a), c = (a - b)
Discriminant(D) = b² -2ac
D = (c - a)² - 4(b - c)(a - b)
D = c² + a² - 2ac – 4(ab - b² - ac + cb)
[(a - b)² = a² + b² - 2ab]
D = c² + a² - 2ac – 4ab + 4b² + 4ac - 4cb
D = c² + a² - 2ac + 4ac – 4ab + 4b² - 4cb
D = c² + a² + 2ac – 4ab + 4b² - 4cb
D = a² + 4b² + c² + 2ac - 4ab - 4cb
As We know that , (a + c - 2b)² = a² + 4b² + c² + 2ac - 4ab - 4cb
D = (a + c - 2b)²
Real and equal root are Given
Discriminant(D) = 0
0 = (a + c - 2b)²
Put Square root on both sides
0 = √(a + c - 2b)²
0 = (a + c - 2b)
a + c = 2b
Hence , 2b = a + C
HOPE THIS ANSWER WILL HELP YOU….