If the roots of the equation (b-c) x + (c-a) x + (a-b) =0 are equal, then prove that 2b = a+c
1
Answers
Answered by
0
Step-by-step explanation:
If roots of a quadratic equation are equal, then discriminant of the quadratic equation is 0
D=b^2−4ac=0
(b−c)x^2+(c−a)x+(a−b)=0
Comparing with ax ^2+bx+c=0
Here, a=(b−c), b=(c−a) and c=(a−b)
So,
⇒(c−a) ^2 −4(b−c)(a−b)=0
⇒c^2+a^2−2ac−4(ab−b^2−ac+bc)=0
⇒c^2+a ^2−2ac−4ab+4b ^2+4ac−4bc=0
⇒c^2 +a^2 +2ac+4b ^2−4ab−4bc=0
⇒(c+a) ^2+4b ^2 −4b(a+c)=0
⇒(c+a) ^2 +(2b) ^2−2(c+a)(2b)=0
⇒[(c+a)−(2b)] ^2=0
⇒c+a−2b=0
⇒2b=c+a
Hence proved
Similar questions