If the roots of the equation (b-c)x²+(c-a)x+(a-b)=0 are equal, then prove that 2b = a + c.
Answers
SOLUTION :
Given : (b - c) x² + (c - a)x + (a - b) = 0 .
On comparing the given equation with ax² + bx + c = 0
Here, a = (b - c), b = (c - a), c = (a - b)
Discriminant(D) = b² -2ac
D = (c - a)² - 4(b - c)(a - b)
D = c² + a² - 2ac – 4(ab - b² - ac + cb)
[(a - b)² = a² + b² - 2ab]
D = c² + a² - 2ac – 4ab + 4b² + 4ac - 4cb
D = c² + a² - 2ac + 4ac – 4ab + 4b² - 4cb
D = c² + a² + 2ac – 4ab + 4b² - 4cb
D = a² + 4b² + c² + 2ac - 4ab - 4cb
As We know that , (a + c - 2b)² = a² + 4b² + c² + 2ac - 4ab - 4cb
D = (a + c - 2b)²
Real and equal root are Given
Discriminant(D) = 0
0 = (a + c - 2b)²
Put Square root on both sides
0 = √(a + c - 2b)²
0 = (a + c - 2b)
a + c = 2b
Hence , 2b = a + C
HOPE THIS ANSWER WILL HELP YOU….
The roots are equal .
Let one root be p .
Hence sum of roots will be p + p = 2 p
Now see the polynomial .
( b - c ) x² + ( c - a ) x + ( a - b ) = 0
Compare with a x² + bx + c = 0 we get :
a = b - c
b = c - a
c = a - b
Sum of roots = - b / a
2 p = - b / a
= > 2 p = - ( c - a ) / ( b - c )
= > 2 p = ( a - c ) / ( b - c )
= > p = ( a - c ) / 2 ( b - c ) ........( 1 )
Product of roots = c / a
= > p × p
= > p² = ( a - b ) / ( b - c ) .............( 2 )
Square ( 1 ) to get :
p² = ( a - c )² / 4 ( b - c )² ...........( 3 )
From ( 3 ) and ( 2 ) we have :
( a - c )² / 4 ( b - c )² = ( a - b ) / ( b - c )
= > ( a - c )² = 4 ( a - b )( b - c )
= > a² + c² - 2 ac = 4 ( ab - ac - b² + bc )
= > a² + c² - 2 ac = 4 ab - 4 ac - 4 b² + 4 bc
= > a² + 4 b² + c² + 2 ac - 4 ab - 4 bc = 0
= > ( a - 2 b + c )² = 0
= > ( a - 2 b + c ) = 0
= > a + c= 2 b