if the roots of the equation x^2-15-m(2x-8)=0 are real and distinct then m is the element of
Answers
Answered by
4
Step-by-step explanation:
x² -15 -m(2x-8)=0
=>x² -15 -2mx+8m=0
=>x² -2mx +(8m-15)=0
Comparing with the form ax²+bx+c= 0
we have
a= 1
b= -2m
c= 8m-15
for real distinct roots we have,
b² - 4ac ≥ 0
=>(-2m)² - 4(1)(8m-15) ≥ 0
=> 4m² -32m + 60 ≥ 0
=> m² - 8m + 15 ≥ 0
=> m² - 3m -5m +15 ≥ 0
=> m(m-3) -5(m-3) ≥ 0
=> (m-5) (m-3) ≥ 0
m= 5; m= 3
Case 1: take m=5
x² -15 -5(2x-8)=0
=>x² -15 -10x + 40=0
=>x² -10x + 25=0
=>x² -5x -5x + 25=0
=>x(x-5) -5(x-5)=0
=> (x-5)(x-5)=0
x = 5; x= 5
So, the equal roots are 5,5
Case 2: take m=3
x² -15 -3(2x-8)=0
=>x² -15 -6x + 24=0
=>x² -6x + 9=0
=>x² -3x -3x + 9=0
=>x(x-3) -3(x-3)=0
=> (x-3)(x-3)=0
x = 3; x= 3
So, the equal roots are 3,3
Therefore,the possible values of m= 3 and 5
Similar questions
Social Sciences,
6 months ago
Hindi,
6 months ago
Math,
6 months ago
Math,
11 months ago
Computer Science,
11 months ago
Math,
1 year ago
Math,
1 year ago