Math, asked by anshika9239, 1 month ago

If the roots of the equation x^2-16(k-8)^2 x+(k^2+16k+64)=0 are reciprocal to each other then k=

Answers

Answered by amansharma264
10

EXPLANATION.

Quadratic equation.

⇒ x² - 16(k - 8)²x + (k² + 16k + 64) = 0.

As we know that,

Let one roots be = α.

Other roots be reciprocal to other = 1/α.

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ α x 1/α = (k² + 16k + 64)/1.

⇒ 1 = k² + 16k + 64.

⇒ k² + 16k + 63 = 0.

Factorizes the equation into middle term splits, we get.

⇒ k² + 9k + 7k + 63 = 0.

⇒ k(k + 9) + 7(k + 9) = 0.

⇒ (k + 7)(k + 9) = 0.

⇒ k = -7  and  k = -9.

                                                                                                                         

MORE INFORMATION.

Nature of the roots of the quadratic epression.

(1) = Real and different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Answered by Anonymous
7

Answer:

\huge\{ \underline \red{SOLUTION} \}

Given,

 =  &gt;  {x}^{2}  - 16(k - 18 {)}^{2} x + ( {k}^{2}  + 16k + 64) = 0 \\

Now,

Let's assume the one root as

 =  &gt;  \alpha

other \: root \: as  \:  \: \frac{1}{ \alpha }

( b'coz reciprocal of the root)

Let's find the Products of the zeros of the quadratic equation.

 \alpha  \beta  =  \frac{c}{a}  \\

 =  &gt;  \alpha  \times  \frac{1}{ \alpha }  =  \frac{( {k}^{2}  + 16k + 64)}{1}  \\

 =  &gt; 1 =  {k}^{2}  + 16k + 64

 =  &gt;  {k}^{2}  + 16k + 63 = 0 \\

Now, by factorising the equation into middle term split , we get

 =  &gt;  {k}^{2}  + 9k + 7k + 63 = 0 \\

 =  &gt; k(k + 9) + 7(k + 9) = 0 \\

(k + 7)(k + 9) = 0 \\

k =  - 7 \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  \: k =  - 9 \\

Therefore , the value of k is

 \pink{k =  - 7 \:  \: , \:  \:  - 9}

Similar questions
Math, 8 months ago