If the roots of the equation x²+ 2cx+ ab=0 are real unequal ,prove that the equation
x²-2(a+b )x + a² + b² + 2c² =0 has no real roots
Answers
Answered by
11
Step-by-step explanation:
if x² + 2cx + ab=0 have real unequal roots then b²-4ac>0
i.e. (2c)²-4(1)(ab)>0
4c²-4ab>0
4c²>4ab
c²>ab ......................( 1 )
in x²-2(a+b)x+a²+b²+2c²=0
b²-4ac = (-2(a+b))² - 4(1)(a²+b²+2c²)
= 4(a²+b²+2ab)-4(a²+b²+2c²)
=4a²+4b²+8ab-4a²-4b²-8c²
=8ab-8c²
=8(ab-c²)
but since ab<c² then ab-c²<0
therefore, x²-2(a+b)x+a²+b²+2c²=0 has no real roots as b²-4ac<0
Similar questions