Math, asked by Dhee88, 7 months ago

If the roots of the quadratic equation (a-b)x2+(b-c)x+(c-α) = 0 are equal, prove that
2a = b+c.

Answers

Answered by BrainlyPopularman
8

GIVEN :

• The roots of the quadratic equation (a-b)x²+(b-c)x+(c-a) = 0 are equal.

TO PROVE :

• 2a = b + c

SOLUTION :

• If a quadratic equation ax² + bx + c = 0 & it's roots are equal then Discriminant of quadratic equation will be zero.

 \\ \implies\large { \boxed{ \bf D = 0}} \\

 \\ \implies\large { \boxed{ \bf  {b}^{2} - 4ac  = 0}} \\

• Now put the values –

 \\ \implies\bf  {(b - c)}^{2} - 4(a - b)(c - a)  = 0 \\

 \\ \implies\bf  {(b - c)}^{2}  = 4(a - b)(c - a)\\

 \\ \implies\bf  {b}^{2} +  {c}^{2}  - 2bc= 4(ac -  {a}^{2} - bc +ab)\\

 \\ \implies\bf  {b}^{2} +  {c}^{2}  - 2bc - 4(ac -  {a}^{2} - bc +ab) = 0\\

 \\ \implies\bf  {b}^{2} +  {c}^{2}  - 2bc - 4ac + 4{a}^{2} + 4bc - 4ab= 0\\

 \\ \implies\bf  4 {a}^{2} +  {b}^{2} +  {c}^{2} - 4ac + 2bc - 4ab= 0\\

• We should write this as –

 \\ \implies\bf  {(2a - b - c)}^{2} = 0\\

 \\ \implies\bf 2a - b - c= 0\\

 \\\large\implies{ \boxed{\bf 2a  =  b + c}}\\

 \\ \large\longrightarrow{ \boxed{\bf Hence \:  \:Proved }}\\

Answered by Anonymous
115

GIVEN:-

The roots of the quadratic equation (a-b)x2+(b-c)x+(c-α) = 0 are equal.

TO PROVE:-

2a=b+c

PROOF:-

•Let the given equation is in the form of Ax²+Bx+C

Where ,

•A=(a-b),

•B=(b-c) and

• C=(c-a)

Apply below formula for finding Discriminant of the quadratic equation

•D=B²-4AC

∴D=(b-c)²-4(a-b)(c-a)

For equal roots we must have Discriminant, D=0

Now ,D=0

(b-c)²-4(a-b)(c-a)=0

⇛4a²+b²+c²-4ab+2bc-4ac=0

⇛(-2a)²+b²+c²+2(-2a)b+2bc+2c(-2a)=0

⇛(-2a+b+c)²=0

⇛-2a+b+c=0

⇛b+c=2a

Or 2a=b+c

Hence,proved

Similar questions
Math, 3 months ago