If the roots of the quadratic equation
(a - b)x² + (b-c)x + (c - a) = 0 are equal, ther
prove that 2a = b + c.
Answers
Given:-
Roots of the quadratic equation (a - b)x² + (b - c)x + (c - a) = 0 and are equal.
To Prove:-
2a = b + c
Proof:-
(a - b)x² + (b - c)x + (c - a) = 0
The above equation is in the form ax² + bx + c = 0
Where, a = (a - b), b = (b - c) and c = (c -a)
Given that roots are equal. Means it's determinant is also equal to zero i.e. D = 0
We know that
D = (b)² - 4ac = 0
⇒ (b - c)² - 4(a - b)(c - a) = 0
⇒ b² + c² - 2bc - 4[a(c - a) -b(c - a)] = 0
⇒ b² + c² - 2bc - 4(ac - a² - bc + ab) = 0
Take 2 common from (-4ac - 4a² - 4bc + 4ab)
⇒ b² + c² - 2bc - 4ac - 4a² - 4bc + 4ab = 0
⇒ b² + c² - 2bc - 2(2ac) + (2a)² + 4bc - 2(2ab) = 0
[ 4bc - 2bc = 2bc ]
⇒ b² + c² + 2bc - 2(2ac) + (2a)² - 2(2ab) = 0
⇒ b² + c² +/2bc - 2c(2a) + (2a)² - 2b(2a) = 0
⇒ (2a)² + b² + c² - 2c(2a) - 2b(2a) = 0
We can also write (2a)² as (-2a)² because (-) (-) = (+)
⇒ (-2a)² + b² + c² - 2c(2a) - 2b(2a) = 0
We know that (-2a + b + c)² = (-2a)² + b² + c² - 2c(2a) - 2b(2a)
⇒ (-2a + b + c)² = 0
⇒ - 2a + b + c = 0
⇒ b + c = 2a
Hence, proved.
Question :---
- If the roots of the quadratic equation
(a - b)x² + (b-c)x + (c - a) = 0 are equal, ther
prove that 2a = b + c.
concept used :-----
If A•x^2 + B•x + C = 0 ,is any quadratic equation,
then its discriminant is given by;
D = B^2 - 4•A•C
• If D = 0 , then the given quadratic equation has real and equal roots.
• If D > 0 , then the given quadratic equation has real and distinct roots.
• If D < 0 , then the given quadratic equation has unreal (imaginary) roots...
____________________________
Solution :-----
From Equation (a - b)x² + (b-c)x + (c - a) = 0 ,
we have ,
→ A = (a-b)
→ B = (b-c)
→ C = (c-a)
Since, Roots are Equal, our discriminant will be Equal to Zero ....
→ B² - 4*AC = 0 ,
Putting Values now,
☛ (b-c)² - 4×(a-b)(c-a) = 0
[ we know (x-y)² = x² + y² - 2xy) ]
☛ b² + c² -2bc -4ac + 4a² + 4bc - 4ab = 0
☛ b² + c² +4a² -2bc + 4bc -4ac -4ab = 0
☛b² + c² + 4a² + 2bc - 4ac - 4ab = 0
☛ b² + c² + (-2a)² + 2bc + 2b(-2a) + 2c(-2a) = 0
[ comparing this with the formula
(a+b-c)² = a² + b² + c² + 2ab - 2bc - 2ca we get, ]
☛ (b + c - 2a)²= b² + c² + (-2a)² + 2bc + 2b(-2a) + 2c(-2a)= 0
So, we can say that,
☛ (b +c - 2a) = 0
or ,
☛ b + c = 2a [ Hence, Proved ] .
______________________________
★Extra Brainly knowledge :----- ★
[1] ( a + b )² = a² + 2ab + b²
[2] ( a – b )² = a² – 2ab + b²
[3] ( a + b )³ = a³ + 3a² b + 3ab² + b³
[4] ( a – b )³ = a ³ – 3a² b + 3ab² – b³
[5] ( a + b )( a ² - ab + b² ) = a³ + b³
[6] ( a – b )( a ² + ab + b² ) = a³ – b³