Math, asked by vtfgjjbif, 5 months ago

if the roots of the quadratic equation (a-b)x² + (b-c)x + (c-a)=0 are equal prove their a²-b²+2ac =0​

Answers

Answered by vanshikash503
0

Answer:

down there

Step-by-step explanation:

by putting these values in equation 1... we get...

(c-a)2 - 4 (b-c) (a-b) = 0

c2+a2-2ac - 4(ab-b2-ac+bc) = 0

c2+a2-2ac-4ab+4b2+4ac - 4bc = 0

a2 + 4b2 + c2 - 4ab - 4bc + 2ac = 0

(a-2b+c)2 = 0

so....

a -2b + c = 0

a + c = 2b

by putting these values in equation 1... we get...

(c-a)2 - 4 (b-c) (a-b) = 0

c2+a2-2ac - 4(ab-b2-ac+bc) = 0

c2+a2-2ac-4ab+4b2+4ac - 4bc = 0

a2 + 4b2 + c2 - 4ab - 4bc + 2ac = 0

(a-2b+c)2 = 0

so....

a -2b + c = 0

a + c = 2b

by putting these values in equation 1... we get...

(c-a)2 - 4 (b-c) (a-b) = 0

c2+a2-2ac - 4(ab-b2-ac+bc) = 0

c2+a2-2ac-4ab+4b2+4ac - 4bc = 0

a2 + 4b2 + c2 - 4ab - 4bc + 2ac = 0

(a-2b+c)2 = 0

so....

a -2b + c = 0

a + c = 2b

Similar questions