Math, asked by shaik1587, 1 year ago

if the roots of the quadratic equation (a minus b) close X square + (minus b minus C) close X + (c minus A is equals to zero are equal then prove that two A is equals to b + c​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{Roots\;of\;(a-b)^2+(b-c)x+(c-a)=0\;are\;equal}

\underline{\textbf{To prove:}}

\mathsf{2a=b+c}

\underline{\textbf{Solution:}}

\mathsf{Consider,\;\;(a-b)^2+(b-c)x+(c-a)=0}

\mathsf{Here,\;\;"a"=a-b,\;\;"b"=b-c,\;\;"c"=c-a}

\textsf{Since the roots of the equation are equal,}

\textsf{we\;have\;}\boxed{\bf\,b^2-4ac=0}

\implies\mathsf{(b-c)^2-4(a-b)(c-a)=0}

\implies\mathsf{(b-c)^2-4(ac-a^2-bc+ab)=0}

\implies\mathsf{(b-c)^2-4ac+4a^2+4bc-4ab=0}

\implies\mathsf{((b-c)^2+4bc)-4ac+4a^2-4ab=0}

\implies\mathsf{(b+c)^2-4ac-4ab+4a^2=0}

\implies\mathsf{(b+c)^2-4a(b+c)+4a^2=0}

\implies\mathsf{(b+c)^2-2(2a)(b+c)+(2a)^2=0}

\mathsf{Using,}\;\boxed{\mathsf{(a-b)^2=a^2-2ab+b^2}}

\mathsf{((b+c)-2a)^2=0}

\implies\mathsf{(b+c)-2a=0}

\implies\boxed{\mathsf{2a=b+c}}

Similar questions