if the roots of the quadratic equation a minus b x square + b minus C X + c minus A is equal to zero are equal then prove that 2 is equal to b + c
Answers
Answer:
Step-by-step explanation:
let r & s be the roots, then:
r + s = -(b - c)/(a - b)
but r = s:
2r = -(b - c)/(a - b)
r = -(b - c)/[2(a - b)]
also:
r * s = r^2 = (c - a)/(a - b)
(b - c)^2/[4(a - b)^2] = (c - a)/(a - b)
(b - c)^2/[4(a - b)] = (c - a)
b^2 - 2bc + c^2 = 4ac - 4a^2 - 4bc + 4ab
4a^2 - 4ab + b^2 - 4ac + 2bc + c^2 = 0
(2a - b)^2 - 2c(2a - b) + c^2 = 0
[(2a - b) - c]^2 = 0
2a - b - c = 0
2a = b + c
Hey!!! Liam here is your answer :
(b-c)x2 +(c-a)x +(a-b) = 0
if the roots of this equation in equal than D = o i.e,
D = 0
means..
b2 - 4ac = 0
bere b = (c-a)
a = (b-c)
c = (a-b)
by putting these values in equation 1... we get...
(c-a)2 - 4 (b-c) (a-b) = 0
c2+a2-2ac - 4(ab-b2-ac+bc) = 0
c2+a2-2ac-4ab+4b2+4ac-4bc = 0
a2+4b2+c2-4ab-4bc+2ac = 0
(a-2b+c)2 = 0
so....
a-2b+c = 0
a+c = 2b