Math, asked by nawaz7821, 5 months ago

If the roots of the quadratic equation (a²+b²)x² +2(bc-ad)x +c²+d² =0 are real and equal then show that ac + bd = 0 .​

Answers

Answered by MaIeficent
25

Step-by-step explanation:

Given:-

  • A quadratic equation (a² + b²)x² + 2(bc - ad)x + c² + d² = 0.

  • The roots of the equation are real and equal.

To Prove:-

  • ac + bd = 0

Concept used:-

For a quadratic equation ax² + bx + c = 0

If the roots are real and equal

Then, b² - 4ac = 0

Solution:-

Comparing (a² + b²)x² + 2(bc - ad)x + c² + d² =0 with ax² + bx + c

Here:-

• a = a² + b²

• b = 2(bc - ad)

• c = c² + d²

 \sf \implies {b}^{2}  - 4ac = 0

 \sf \implies { \big[2(bc - ad) \big]}^{2}  - 4( {c}^{2} +  {d}^{2})( {a}^{2}  +  {b}^{2} ) = 0

 \sf \implies { 4(bc - ad)}^{2}   =  4( {c}^{2} +  {d}^{2})( {a}^{2}  +  {b}^{2} )

 \sf \implies {(bc - ad)}^{2}   =  ( {c}^{2} +  {d}^{2})( {a}^{2}  +  {b}^{2} )

 \sf \implies  {b}^{2} {c}^{2}   +  {a}^{2}  {d}^{2}  + 2acbd  =   {a}^{2} {c}^{2} +   {a}^{2} {d}^{2} +  {b}^{2} {c}^{2}  +  {b}^{2} {d}^{2}

 \sf \implies  {b}^{2} {c}^{2}   +  {a}^{2}  {d}^{2}  - {a}^{2} {d}^{2}  -  {b}^{2} {c}^{2}    =    {a}^{2} {c}^{2}  +  {b}^{2} {d}^{2} + 2acbd

 \sf \implies     {a}^{2} {c}^{2}  +  {b}^{2} {d}^{2} + 2acbd  = 0

 \sf \implies    (ac  + bd)^{2} = 0

 \sf \implies   ac + bd= 0

\dashrightarrow \large\underline{\boxed{\therefore \textsf{\textbf{ac + bd = 0}}}}

Hence Proved


prince5132: Great !!
Answered by Anonymous
8

\huge\sf\underline\red{SOLUTION}

Given that,

Roots of quadratic equation are real and equal

Roots of (a² +b²) x² + 2(bc - ad ) x + c²+ d²=0

Show that ac + bd =0

So, If roots are real and equal b²-4ac =0

So,

a = a² + b²

b = 2(bc - ad)

c = c²+d²

So

b² -4ac =0

Plugging values of a,b,c

[2(bc-ad)]² - 4 ( a² + b² ) (c² + d²)=0

4 ( bc - ad )² - 4 ( a² + b² ) c² + (a² + b²)(d²)=0

4( b²c²-2bcad + a²d²) -4(a²c² + b²c²)+(a²d²+b²d²)=0

4b²c²-8abcd+4a²d²-4a²c²-4b²c²-4a²d²-4b²d²=0

-4a²b²d² -4a²c² -8abcd

-4(2abcd + a²c² +b²d²)=0

2abcd + a²c²+b²d²=0

(ac + bd)² =0

ac + bd =0. Hence proved!!!!

KNOW MORE

If D=0 roots are real and equal

If D >0 roots are real and distinct

If D<0 roots are complex and conjugate

Similar questions