If the roots of the quadratic equation (a²+b²)x² +2(bc-ad)x +c²+d² =0 are real and equal then show that ac + bd = 0 .
Answers
Step-by-step explanation:
Given:-
- A quadratic equation (a² + b²)x² + 2(bc - ad)x + c² + d² = 0.
- The roots of the equation are real and equal.
To Prove:-
- ac + bd = 0
Concept used:-
For a quadratic equation ax² + bx + c = 0
If the roots are real and equal
Then, b² - 4ac = 0
Solution:-
Comparing (a² + b²)x² + 2(bc - ad)x + c² + d² =0 with ax² + bx + c
Here:-
• a = a² + b²
• b = 2(bc - ad)
• c = c² + d²
Hence Proved
Given that,
Roots of quadratic equation are real and equal
Roots of (a² +b²) x² + 2(bc - ad ) x + c²+ d²=0
Show that ac + bd =0
So, If roots are real and equal b²-4ac =0
So,
a = a² + b²
b = 2(bc - ad)
c = c²+d²
So
b² -4ac =0
Plugging values of a,b,c
[2(bc-ad)]² - 4 ( a² + b² ) (c² + d²)=0
4 ( bc - ad )² - 4 ( a² + b² ) c² + (a² + b²)(d²)=0
4( b²c²-2bcad + a²d²) -4(a²c² + b²c²)+(a²d²+b²d²)=0
4b²c²-8abcd+4a²d²-4a²c²-4b²c²-4a²d²-4b²d²=0
-4a²b²d² -4a²c² -8abcd
-4(2abcd + a²c² +b²d²)=0
2abcd + a²c²+b²d²=0
(ac + bd)² =0
ac + bd =0. Hence proved!!!!
KNOW MORE
If D=0 roots are real and equal
If D >0 roots are real and distinct
If D<0 roots are complex and conjugate