If the roots of the quadratic equation (p+1)x^{2}-6(p+1)x+3(p+9)=0 are equal, find p and then find the roots of this quadratic equation.
Answers
GiveN:
- Quadratic p(x) = (p+1)x² - 6(p+1) x+ 3(p+9)= 0
- Roots are real and equal.
To FinD:
- Value of p?
- Roots of the quad. equation?
Step-wise-Step Explanation:
Compare given equation with the general form of quadratic equation, which is ax² + bx + c:
- a = p + 1
- b = -6(p + 1)
- c = 3(p + 9)
We know that when the roots are real and equal, Discriminate 'D' = 0. ( D = b² - 4ac)
⇒ b² - 4ac = 0
Plugging the given values to find p:
⇒ {-6(p + 1)}² - 4 × 3(p + 9)(p + 1) = 0
⇒ 36(p² + 2p + 1) - 12(p² + 10p + 9) = 0
⇒ 36p² + 72p + 36 - 12p² - 120p - 108 = 0
⇒ 24p² - 48p - 72 = 0
⇒ 24(p² - 2p - 3) = 0
⇒ p² - 2p - 3 = 0
Factorising by middle term factorisation,
⇒ p² - 3p + p - 3 = 0
⇒ p(p - 3) + 1(p - 3) = 0
⇒ (p + 1)(p - 3) = 0
Then, p = -1,3
p cannot be -1 because the quad. eq. will no longer remain a quad. eq. Hence, p = 3.
⇒ 4x² - 24x + 36 = 0
⇒ x² - 6x + 9 = 0
Factorising by middle term factorisation,
⇒ x² - 3x - 3x + 9 = 0
⇒ x(x - 3) - 3(x - 3) = 0
⇒ (x - 3)(x - 3) = 0
Then, x = 3,3
Hence,
- The value of p is -3
- The roots are 3 and 3.
♣ Qᴜᴇꜱᴛɪᴏɴ :
- If the roots of the quadratic equation (p + 1)x² - 6(p + 1)x + 3(p + 9) = 0 are equal, find p and then find the roots of this quadratic equation.
★═════════════════★
♣ ᴀɴꜱᴡᴇʀ :
- Roots are x = 3 , 3
★═════════════════★
♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :
We know for equal roots Discriminant 'D' = 0. Also, D = b² - 4ac
So : b² - 4ac = 0
∴ D = b² - 4ac = 0
Here :
- a = p +1
- b = -6(p + 1)
- c = 3(p + 9)
Keeping the values in D = b² - 4ac = 0 :
⇒ [-6(p + 1)]² - 4× (p + 1) × 3(p +9) = 0
Apply exponent rule : (-a)ⁿ = aⁿ, where n is even
⇒ 6²(p + 1)² - 12(p + 1)(p +9) = 0
⇒ 36(p + 1)² - 12(p + 1)(p +9) = 0
We know : (a + b)² = a² + b² + 2ab
⇒ 36(p² + 1² + 2 × p × 1) - 12(p + 1)(p +9) = 0
⇒ 36(p² + 1 + 2p) - 12(p + 1)(p +9) = 0
⇒ (36 × p²) + (36 × 1) + (36 × 2p) - 12(p + 1)(p +9) = 0
⇒ 36p² + 36 + 72p - 12p² - 120p - 108 = 0
⇒ 36p²- 12p²+ 72p - 120p + 36 - 108 = 0
⇒ 24² + 72p - 120p + 36 - 108 = 0
⇒ 24p² - 48p + 36 - 108 = 0
⇒ 24p² - 48p -72 = 0
Taking 24 as common :
⇒ 24(p² - 2p - 3) = 0
⇒ 24(p + 1)(p - 3)=0
Using the Zero Factor Principle:
If ab = 0 then a = 0 or b = 0 (or both a=0 and b=0)
p + 1 = 0 or p - 3 = 0
p + 1 = 0
⇒ p + 1 - 1 = 0 - 1
⇒ p = -1
p - 3 = 0
⇒ p - 3 + 3 = 0 + 3
⇒ p = 3
∴ p = -1, 3
Neglecting p ≠ -1
∴ p = 3
Already we have :
- a = p + 1
- b = -6(p + 1)
- c = 3(p + 9)
Substituting the value of p :
a = p + 1
a = 3 + 1
a = 4
b = -6(p + 1)
b = -6(3 + 1)
b = -6(4)
b = -24
c = 3(p + 9)
c = 3(3 + 9)
c = 3(12)
c = 36
Putting these values in quadratic equation : ax² + bx + c = 0
ax² + bx + c = 0
⇒ 4x² + (-24x) + 36 = 0
⇒ 4x² - 24x + 36 = 0
Let's solve with Quadratic Equation !!
For a = 4, b = -24, c = 36
x = 3